切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 185 -189. doi: 10.3877/cma.j.issn.2096-1537.2019.02.018

所属专题: 文献

综述

巨噬细胞极化在脓毒症免疫机制中的作用
沈灵芝1, 李莉2, 严静3,()   
  1. 1. 325000 温州,温州医科大学第一临床医学院
    2. 310013 杭州,浙江医院重症医学科
    3. 325000 温州,温州医科大学第一临床医学院;310013 杭州,浙江医院重症医学科
  • 收稿日期:2018-02-06 出版日期:2019-05-28
  • 通信作者: 严静
  • 基金资助:
    国家自然科学基金(81772051,81401580)

The role of macrophage polarization in the immune mechanism of sepsis

Lingzhi Shen1, Li Li2, Jing Yan3,()   

  1. 1. The First Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, China
    2. Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou 310013, China
    3. The First Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, China; Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou 310013, China
  • Received:2018-02-06 Published:2019-05-28
  • Corresponding author: Jing Yan
  • About author:
    Corresponding auther: Yan Jing, Email:
引用本文:

沈灵芝, 李莉, 严静. 巨噬细胞极化在脓毒症免疫机制中的作用[J]. 中华重症医学电子杂志, 2019, 05(02): 185-189.

Lingzhi Shen, Li Li, Jing Yan. The role of macrophage polarization in the immune mechanism of sepsis[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(02): 185-189.

脓毒症是由于感染引起的免疫功能失调,最终导致的多脏器功能障碍综合征。巨噬细胞作为先天性免疫和适应性免疫的重要组成成分之一,当微环境变化时,可分化成具有不同功能的表型,称为巨噬细胞极化。巨噬细胞极化在脓毒症的免疫调节中发挥重要作用,调控巨噬细胞极化有望成为未来脓毒症治疗的新靶点。因此,本文就巨噬细胞极化及其在脓毒症免疫机制中的作用进行综述。

Sepsis is a syndrome of immune response caused by infection, resulting in multiple organ dysfunction. Macrophages, as one of the important components of innate and adaptive immunity, can differentiate into phenotypes with different functions when the microenvironment changes which is called macrophage polarization. Macrophage polarization plays an important role in the immunoregulation of sepsis. The regulation of macrophage polarization is expected to be one of the new targets for the treatment of sepsis in the future. Therefore, we review the role of macrophage polarization and its underlying mechanisms in the immunoregulation of sepsis.

1
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8):801-810.
2
Van Der Poll T, Van De Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets [J]. Nat Rev Immunol, 2017, 17(7):407-420.
3
Biswas SK, Chittezhath M, Shalova IN, et al. Macrophage polarization and plasticity in health and disease [J]. Immunol Res, 2012, 53(1-3):11-24.
4
Sica A, Erreni M, Allavena P, et al. Macrophage polarization in pathology [J]. Cell Mol Life Sci, 2015, 72(21):4111-4126.
5
Liu YC, Zou XB, Chai YF, et al. Macrophage polarization in inflammatory diseases [J]. Int J Biol Sci, 2014, 10(5):520-529.
6
Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage ″switch″ phenotype [J]. Biomed Res Int, 2015, 2015:341308.
7
Labonte AC, Tosello-Trampont AC, Hahn YS. The role of macrophage polarization in infectious and inflammatory diseases [J]. Mol Cells, 2014, 37(4):275-285.
8
Arora S, Dev K, Agarwal B, et al. Macrophages: Their role, activation and polarization in pulmonary diseases [J]. Immunobiology, 2017, 223(4-5):383-396.
9
Wilson HM. SOCS proteins in macrophage polarization and function [J]. Front Immunol, 2014, 5:357.
10
Croasdell A, Duffney PF, Kim N, et al. PPARgamma and the innate immune system mediate the resolution of inflammation [J]. PPAR Res, 2015, 2015:549691.
11
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance [J]. Nature, 2007, 447(7148):1116-1120.
12
Szanto A, Balint BL, Nagy ZS, et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells [J]. Immunity, 2010, 33(5):699-712.
13
Liao X, Sharma N, Kapadia F, et al. Kruppel-like factor 4 regulates macrophage polarization [J]. J Clin Invest, 2011, 121(7):2736-2749.
14
Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways [J]. Cell Signal, 2014, 26(2):192-197.
15
Luyendyk JP, Schabbauer GA, Tencati M, et al. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages [J]. J Immunol, 2008, 180(6):4218-4226.
16
Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization [J]. Proc Natl Acad Sci U S A, 2012, 109(24):9517-9522.
17
Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses [J]. Nat Immunol, 2011, 12(3):231-238.
18
Eguchi J, Kong X, Tenta M, et al. Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization [J]. Diabetes, 2013, 62(10):3394-3403.
19
Takeuch O, Akira S. Epigenetic control of macrophage polarization [J]. Eur J Immunol, 2011, 41(9):2490-2493.
20
Ishii M, Wen H, Corsa CA, et al. Epigenetic regulation of the alternatively activated macrophage phenotype [J]. Blood, 2009, 114(15):3244-3254.
21
Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection [J]. Nat Immunol, 2010, 11(10):936-944.
22
Essandoh K, Li Y, Huo J, et al. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response [J]. Shock, 2016, 46(2):122-131.
23
Ying H, Kang Y, Zhang H, et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway [J]. J Immunol, 2015, 194(3):1239-1251.
24
Banerjee S, Xie N, Cui H, et al. MicroRNA let-7c regulates macrophage polarization [J]. J Immunol, 2013, 190(12):6542-6549.
25
Porta C, Rimoldi M, Raes G, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB [J]. Proc Natl Acad Sci U S A, 2009, 106(35):14978-14983.
26
Pena OM, Pistolic J, Raj D, et al. Endotoxin tolerance represents a distinctive state of alternative polarization (M2) in human mononuclear cells [J]. J Immunol, 2011, 186(12):7243-7254.
27
Xu G, Feng L, Song P, et al. Isomeranzin suppresses inflammation by inhibiting M1 macrophage polarization through the NF-kappaB and ERK pathway [J]. Int Immunopharmacol, 2016, 38:175-185.
28
Shu B, Feng Y, Gui Y, et al. Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-kappaB signaling suppression [J]. Cell Signal, 2018, 42:249-258.
29
Singh P, Dejager L, Amand M, et al. DUSP3 genetic deletion confers M2-like macrophage-dependent tolerance to septic shock [J]. J Immunol, 2015, 194(10):4951-4962.
30
Tang H, Liang YB, Chen ZB, et al. Soluble egg antigen activates M2 macrophages via the STAT6 and PI3K pathways, and schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice [J]. J Cell Biochem, 2017, 118(12):4230-4239.
31
Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1beta-primed mesenchymal stem cells against sepsis [J]. Stem Cells, 2017, 35(5):1208-1221.
32
Xia H, Chen L, Liu H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype [J]. Sci Rep, 2017, 7(1):99.
33
Li X, Mu G, Song C, et al. Role of M2 macrophages in sepsis-induced acute kidney injury [J]. Shock, 2018, 50(2):233-239.
34
Venet F, Rimmele T, Monneret G. Management of sepsis-induced immunosuppression [J]. Crit Care Clin, 2018, 34(1):97-106.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[9] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[10] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[13] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要