切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 151 -158. doi: 10.3877/cma.j.issn.2096-1537.2019.02.013

所属专题: 文献

基础研究

机械牵张对人肺血管内皮细胞通透性的影响及其分子机制
王亚1, 兰媛1, 傅威1, 刘晓青1, 黄勇波1, 毛璞2, 黎毅敏1,()   
  1. 1. 510120 广州医科大学第一附属医院,广州呼吸健康研究院,呼吸疾病国家重点实验室
    2. 510120 广州医学院第一附属医院医院感染管理科
  • 收稿日期:2019-02-19 出版日期:2019-05-28
  • 通信作者: 黎毅敏
  • 基金资助:
    国家自然科学基金(81770079); 广东省自然科学基金(2017A030313781和2017A030313712); 广东省科技计划(2016A020215170)

Effect of mechanical stretch on permeability of human pulmonary vascular endothelial cells and underlying molecular mechanism

Ya Wang1, Yuan Lan1, Wei Fu1, Xiaoqing Liu1, Yongbo Huang1, Pu Mao2, Yimin Li1,()   

  1. 1. The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, Guangzhou 510120, China
    2. Department of Infection Management, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
  • Received:2019-02-19 Published:2019-05-28
  • Corresponding author: Yimin Li
  • About author:
    Corresponding author: Li Yimin, Email:
引用本文:

王亚, 兰媛, 傅威, 刘晓青, 黄勇波, 毛璞, 黎毅敏. 机械牵张对人肺血管内皮细胞通透性的影响及其分子机制[J]. 中华重症医学电子杂志, 2019, 05(02): 151-158.

Ya Wang, Yuan Lan, Wei Fu, Xiaoqing Liu, Yongbo Huang, Pu Mao, Yimin Li. Effect of mechanical stretch on permeability of human pulmonary vascular endothelial cells and underlying molecular mechanism[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(02): 151-158.

目的

观察机械牵张对人肺动脉内皮细胞(HPAEC)和人肺微血管内皮细胞(HPMVEC)通透性的影响及对通透性关键蛋白VE-cadherin、Claudin-5和Caveolin-1表达的调控。

方法

采用机械牵张装置Flexcell FX-5000T对HPAEC(ATCC)和HPMVEC(ATCC)施加0.5 Hz频率10%或20%牵张应力。应用qRT-PCR及Western Blot方法检测机械牵张前后内皮通透性关键蛋白VE-cadherin、Claudin-5、Caveolin-1 mRNA和蛋白含量表达变化。采用细胞动态分析仪以及Transwell小室/异硫氰酸荧光素(FITC)-白蛋白法检测机械牵张后的HPAEC细胞和HPMVEC细胞通透性改变。

结果

20%机械牵张后,与对照组比较,HPAEC细胞通透性关键蛋白VE-cadherin mRNA和蛋白表达、Claudin-5 mRNA和蛋白表达和Caveolin-1 mRNA表达均下降(P<0.05),而Caveolin-1蛋白水平较对照组无明显变化;HPMVEC细胞通透性关键蛋白VE-cadherin mRNA和蛋白表达,Caveolin-1 mRNA和蛋白表达均下降(P<0.05),而Claudin-5 mRNA和蛋白水平较对照组无明显变化。

结论

机械牵张会导致肺血管内皮通透性增高,是通过下调通透性关键蛋白的表达,并且两种细胞的通透性影响机制有差异,HPAEC牵涉紧密连接,HPMVEC牵涉跨内皮细胞途径。

Objective

To observe the effect of mechanical stretch on the permeability of human pulmonary artery endothelial cells (HPAECs) and human pulmonary microvascular endothelial cells (HPMVECs) and to examine whether the expression of the key permeability-related proteins VE-cadherin, Claudin-5, and Caveolin-1 is involved in this process.

Methods

The mechanical stretch device Flexcell FX-5000T was used to apply 10% or 20% tensile stress to HPAECs and HPMVECs at a frequency of 0.5 Hz. qRT-PCR and Western blot were used to detect the mRNA and protein expression of VE-cadherin, Claudin-5, and Caveolin-1 in cells before and after mechanical stretch. Mechanical stretched HPAEC cells and HPMVEC cells were monitored by a cell dynamic analyzer and Transwell chamber/FITC-albumin assay to detect their permeability.

Results

In HPAECs after mechanical stretch, the expression of VE-cadherin mRNA and protein, Claudin-5 mRNA and protein, and Caveolin-1 mRNA decreased significantly compared with control cells (P<0.05), while the level of Caveolin-1 protein did not change significantly compared with the control group. In HPMVECs after mechanical stretch, the expression of VE-cadherin mRNA and protein and Caveolin-1 mRNA and protein decreased significantly compared with control cells (P<0.05), while the levels of Claudin-5 mRNA and protein did not change significantly compared with the control group.

Conclusion

Mechanical stretch leads to increased permeability of pulmonary vascular endothelial cells, which is caused by down-regulation of the expression of permeability key proteins, but the permeability mechanisms of the two cell types are different: HPAECs involve tight junctions and HPMVECs involve the transendothelial pathway.

表1 PCR引物设计情况
图1 机械牵张HPAEC和HPMVEC预处理组及对照组给予50 nmol/L Thrombin刺激后电阻值变化。图a为HPAEC 20%机械牵张24 h与对照组比较;图b为HPMVEC 20%机械牵张24 h与对照组比较
图2 机械牵张HPAEC和HPMVEC预处理组及对照组对于FITC-albumin的通透性变化。图a为HPAEC 20%机械牵张24 h与对照组比较;图b为HPMVEC 20%机械牵张24 h与对照组比较
图3 机械牵张对HPAEC通透性关键蛋白VE-cadherin、Claudin-5和Caveolin-1 mRNA表达的影响
表2 机械牵张对HPAEC细胞VE-cadherin、Claudin-5和Caveolin-1 mRNA表达的影响(±s
图4 机械牵张对HPMVEC通透性关键蛋白VE-cadherin、Claudin-5和Caveolin-1 mRNA表达的影响
表3 机械牵张对HPMVEC细胞VE-cadherin、Claudin-5和Caveolin-1 mRNA表达的影响(±s
图5 机械牵张对HPAEC通透性关键蛋白VE-cadherin、Claudin-5和Caveolin-1表达的影响
表4 机械牵张对HPAEC细胞VE-cadherin、Claudin-5和Caveolin-1蛋白表达的影响(±s
图6 机械牵张对HPMVEC通透性关键蛋白VE-cadherin、Claudin-5和Caveolin-1蛋白表达的影响
表5 机械牵张对HPMVEC细胞VE-cadherin、Claudin-5和Caveolin-1蛋白表达的影响(±s
1
Ware LB, Matthay MA. The acute respiratory distress syndrome [J]. N Engl J Med, 2000, 342(18):1334-1349.
2
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome [J]. J Clin Invest, 2012, 122(8):2731-2740.
3
Tobin M, Manthous C. What is acute respiratory distress syndrome? [J]. Am J Respir Crit Care Med, 2017, 196(9):17-18.
4
Zhang R, Pan Y, Fanelli V, et al. Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway [J]. Am J Respir Crit Care Med, 2015, 192(3):315-323.
5
Arthur S, Slutsky V, Ranieri M. Ventilator-induced lung injuriy [J]. N Engl J Med, 2013, 369(22):2126-2136.
6
Barbas CS. Understanding and avoiding ventilator-induced lung injury: lessons from an insightful experimental study [J]. Crit Care Med, 2010, 38(12):2418-2419.
7
Wolthuis EK, Vlaar AP, Choi G, et al. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice [J]. Crit Care, 2009, 13(1):R1.
8
Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside [J]. Intensive Care Med, 2006, 32(1):24-33.
9
Xie J, Jin F, Pan C, et al. The effects of low tidal ventilation on lung strain correlate with respiratory system compliance [J]. Crit Care, 2017, 21(1):23.
10
Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS [J]. Crit Care, 2017, 21(Suppl 3):312.
11
Tonelli AR, Zein J, Adams J, et al. Effects of interventions on survival in acute respiratory distress syndrome: an umbrella review of 159 published randomized trials and 29 meta-analyses [J]. Intensive Care Med, 2014, 40(6):769-787.
12
Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective [J]. J Appl Physiol, 2000, 89(4):1645-1655.
13
Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power [J]. Intensive Care Med, 2016, 42(10):1567-1575.
14
West JB. Thoughts on the pulmonary blood-gas barrier [J]. Am J Physiol Lung Cell Mol Physiol, 2003, 285(3):L501-L513.
15
Wang T, Gross C, Desai AA, et al. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets [J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(4):L452-L476.
16
Vlahakis NE, Schroeder MA, Limper AH, et al. Stretch induces cytokine release by alveolar epithelial cells in vitro [J]. Am J Physiol, 1999, 277(1 Pt 1):L167-L173.
17
Chang J, Xia Y, Wasserloos K, et al. Cyclic stretch induced IL-33 production through HMGB1/TLR-4 signaling pathway in murine respiratory epithelial cells [J]. PLoS One, 2017, 12(9):e0184770.
18
Kuhn H, Petzold K, Hammerschmidt S, et al. Interaction of cyclic mechanical stretch and toll-like receptor 4-mediated innate immunity in rat alveolar type Ⅱ cells [J]. Respirology, 2014, 19(1):67-73.
19
Foster CD, Varghese LS, Gonzales LW, et al. The Rho pathway mediates transition to an alveolar type Ⅰ cell phenotype during static stretch of alveolar type Ⅱ cells [J]. Pediatr Res, 2010, 67(6):585-590.
20
Tschumperlin DJ, Margulies SS. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro [J]. Am J Physiol, 1998, 275(6 Pt 1):L1173-L1183.
21
Ko AC, Hirsh E, Hirschl RB, et al. Segmental hemodynamics during partial liquid ventilation in isolated rat lungs [J]. Resuscitation, 2003, 57(1):85-91.
22
Watson KE, Segal GS, Conhaim RL. Negative pressure ventilation enhances acinar perfusion in isolated rat lungs [J]. Pulm Circ, 2018, 8(1):2045893217753596.
23
Tschumperlin DJ, Oswari J, Margulies AS. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude [J]. Am J Respir Crit Care Med, 2000, 162(2 Pt 1):357-362.
24
Wu S, Lu Q, Wang N, et al. Cyclic stretch induced-retinal pigment epithelial cell apoptosis and cytokine changes [J]. BMC Ophthalmol, 2017, 17(1):208.
25
Frank JA. Claudins and alveolar epithelial barrier function in the lung [J]. Ann N Y Acad Sci, 2012, 1257:175-183.
26
Huang Y, He Q. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability [J]. Environ Toxicol Pharmacol, 2017, 52:62-68.
27
Adkison JB, Miller GT, Weber DS, et al. Differential responses of pulmonary endothelial phenotypes to cyclical stretch [J]. Microvasc Res, 2006, 71(3):175-184.
[1] 赖志远, 刘振玉, 李修江, 周强平. NIX在机械牵张诱导的急性肺损伤中的表达及其严重程度的相关性[J]. 中华肺部疾病杂志(电子版), 2020, 13(03): 340-344.
[2] 连世忠, 冯靖, 苗旺, 郭庚, 王宏勤, 胡晓玲, 宋彬, 徐勇明, 徐茗, 黄训, 师如意. 青蒿琥酯调节Claudin-5基因表达影响胶质瘤细胞力学特性的研究[J]. 中华神经创伤外科电子杂志, 2017, 03(06): 360-364.
阅读次数
全文


摘要