切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (04) : 302 -306. doi: 10.3877/cma.j.issn.2096-1537.2019.04.002

所属专题: 重症医学 文献

专家论坛

正确理解持续炎症-免疫抑制-分解代谢综合征免疫、炎症和代谢的关系
刘军1,()   
  1. 1. 215001 苏州,南京医科大学附属苏州医院 苏州市立医院东区ICU
  • 收稿日期:2018-12-28 出版日期:2019-11-28
  • 通信作者: 刘军
  • 基金资助:
    江苏省苏州市科技发展计划项目(SS201874); 江苏省第五期"333工程"科研项目(BRA2016070); 苏州市卫生计生委科技项目(LCZX201607); 苏州市科技计划项目(SYS201569)

How to correctly understand the relationship between PICS immunity, inflammation and metabolism

Jun Liu1,()   

  1. 1. Department of Critical Care Medicine, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
  • Received:2018-12-28 Published:2019-11-28
  • Corresponding author: Jun Liu
  • About author:
    Corresponding author: Liu Jun, Email:
引用本文:

刘军. 正确理解持续炎症-免疫抑制-分解代谢综合征免疫、炎症和代谢的关系[J]. 中华重症医学电子杂志, 2019, 05(04): 302-306.

Jun Liu. How to correctly understand the relationship between PICS immunity, inflammation and metabolism[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(04): 302-306.

持续炎症-免疫抑制-分解代谢综合征(PICS)是在全身性感染或非感染如创伤、烧伤、急性胰腺炎等进入慢性危重症阶段,以持续炎症反应、免疫抑制、蛋白质高分解代谢为特点的一组临床综合征。PICS患者免疫抑制、持续炎症及蛋白质高分解代谢之间存在复杂的交互对话,相互促进,互为因果。厘清PICS免疫、炎症和代谢之间的内在联系,具有重要临床意义。

Persistent inflammation- immunosuppression catabolism syndrome (PICS) is charactered by an immunocatabolic phenotype of persistent inflammation, immunosuppression, and catabolism in patients with chronic critical illness as a result of sepsis, trauma, burn, acute pancreatitis and so on. There is a complex interactive crosstalk between immune, inflammation and catabolism. It is of great clinical significance to clarify the internal association among immunity, inflammation and metabolism.

图1 PICS免疫-炎症-代谢关系示意图
1
Hawkins RB, Raymond SL, Stortz JA, et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome [J]. Front Immunol, 2018, 9: 1511.
2
Gentile LF, Cuenca AG, Efron PA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care [J]. J Trauma Acute Care Surg, 2012, 72(6): 1491-1501.
3
Stortz JA, Mira JC, Raymond SL, et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients [J]. J Trauma Acute Care Surg, 2018, 84(2): 342-349.
4
Stortz JA, Murphy TJ, Raymond SL, et al. Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis [J]. Shock, 2018, 49(3): 249-258.
5
Inoue S, Suzuki K, Komori Y, et al. Persistent inflammation and T cell exhaustion in severe sepsis in the elderly [J]. Crit Care, 2014, 18(3): R130.
6
刘军. 正确理解危重病免疫功能障碍免疫与炎症的关系 [J]. 中华医学杂志, 2017, 97(7): 483-486.
7
刘军. 对全身性感染免疫与炎症关系的思考 [J]. 中华急诊医学杂志, 2017, 26(11): 1230-1235.
8
Horiguchi H, Loftus TJ, Hawkins RB, et al. Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy [J]. Front Immunol, 2018, 9: 595.
9
Mira JC, Gentile LF, Mathias BJ, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome [J]. Crit Care Med, 2017, 45(2): 253-262.
10
Torgersen C, Moser P, Luckner G, et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis [J]. Anesth Analg, 2009, 108(6): 1841-1847.
11
Fattahi F, Ward PA. Understanding immunosuppression after sepsis [J]. Immunity, 2017, 47(1): 3-5.
12
Timmermans K, Kox M, Vaneker M, et al. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients [J]. Intensive Care Med, 2016, 42(4): 551-561.
13
Andreis DT, Singer M. Catecholamines for inflammatory shock: A Jekyll-and-Hyde conundrum [J]. Intensive Care Med, 2016, 42(9): 1387-1397.
14
Efron PA, Mohr AM, Bihorac A, et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery [J]. Surgery, 2018, 164(2): 178-184.
15
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age [J]. Nat Immunol, 2018, 19(2): 108-119.
16
Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism [J]. Eur J Immunol, 2017, 47(2): 225-235.
17
陈辉,杨毅. 持续性炎症-免疫抑制-分解代谢综合征:重症感染的真凶? [J]. 中华内科杂志,2015,54(8): 670-671.
18
Haimovich B, Zhang Z, Calvano JE, et al. Cellular metabolic regulators: novel indicators of low-grade inflammation in humans [J]. Ann Surg, 2014, 259(5): 999-1006.
19
Eyenga P, Roussel D, Morel J, et al. Time course of liver mitochondrial function and intrinsic changes in oxidative phosphorylation in a rat model of sepsis [J]. Intensive Care Med Exp, 2018, 6(1): 31.
20
Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock [J]. Lancet, 2002, 360(9328): 219-223.
21
Holmes D. Immunometabolism: physiologic role of IL-1β in glucose homeostasis [J]. Nat Rev Endocrinol, 2017, 13(3): 128.
22
Leavy O. Cytokines: regulating energy stores [J]. Nat Rev Immunol, 2011, 11(2): 76.
23
Peters-Golden M, Henderson WR Jr. Leukotrienes [J]. N Engl J Med, 2007, 357(18): 1841-1854.
24
Asehnoune K, Hotchkiss RS, Monneret G. Understanding why clinicians should care about danger-associated molecular patterns [J]. Intensive Care Med, 2016, 42(4): 611-614.
25
Zhao H, Kilgas S, Alam A, et al. The role of extracellular adenosine triphosphate in ischemic organ injury [J]. Crit Care Med, 2016, 44(5): 1000-1012.
26
Lee AH, Ledderose C, Li X, et al. Adenosine triphosphate release is required for toll-Like receptor-induced monocyte/macrophage activation, inflammasome signaling, interleukin-1β production, and the host immune response to infection [J]. Crit Care Med, 2018, 46(12): e1183-e1189.
27
Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system [J]. Nature, 2011, 474(7351): 327-336.
28
Cheng SC, Scicluna BP, Arts RJ, et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis [J]. Nat Immunol, 2016, 17(4): 406-413.
29
Kumar V. Targeting macrophage immunometabolism: dawn in the darkness of sepsis [J]. Int Immunopharmacol, 2018, 58: 173-185.
30
Dalli J, Colas RA, Quintana C, et al. Human Sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes [J]. Crit Care Med, 2017, 45(1): 58-68.
31
Gao Y, Zhang H, Luo L, et al. Resolvin D1 improves the resolution of inflammation via activating NF-κB p50/p50-mediated cyclooxygenase-2 expression in acute respiratory distress syndrome [J]. J Immunol, 2017, 199(6): 2043-2054.
32
Goverse G, Olivier BJ, Molenaar R, et al. Vitamin A metabolism and mucosal immune function are distinct between BALB/c and C57BL/6 mice [J]. Eur J Immunol, 2015, 45(1): 89-100.
33
Kim MH, Taparowsky EJ, Kim CH. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut [J]. Immunity, 2015, 43(1): 107-119.
34
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis [J]. Science, 2013, 341(6145): 569-573.
35
Bieghs V, Trautwein C. The innate immune response during liver inflammation and metabolic disease [J]. Trends Immunol, 2013, 34(9): 446-452.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 季媛, 魏巴金. NLRP3炎性小体在器官移植不良反应发病机制中的研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 308-312.
[6] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[9] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要