切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (04) : 302 -306. doi: 10.3877/cma.j.issn.2096-1537.2019.04.002

所属专题: 重症医学 文献

专家论坛

正确理解持续炎症-免疫抑制-分解代谢综合征免疫、炎症和代谢的关系
刘军1,()   
  1. 1. 215001 苏州,南京医科大学附属苏州医院 苏州市立医院东区ICU
  • 收稿日期:2018-12-28 出版日期:2019-11-28
  • 通信作者: 刘军
  • 基金资助:
    江苏省苏州市科技发展计划项目(SS201874); 江苏省第五期"333工程"科研项目(BRA2016070); 苏州市卫生计生委科技项目(LCZX201607); 苏州市科技计划项目(SYS201569)

How to correctly understand the relationship between PICS immunity, inflammation and metabolism

Jun Liu1,()   

  1. 1. Department of Critical Care Medicine, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
  • Received:2018-12-28 Published:2019-11-28
  • Corresponding author: Jun Liu
  • About author:
    Corresponding author: Liu Jun, Email:
引用本文:

刘军. 正确理解持续炎症-免疫抑制-分解代谢综合征免疫、炎症和代谢的关系[J/OL]. 中华重症医学电子杂志, 2019, 05(04): 302-306.

Jun Liu. How to correctly understand the relationship between PICS immunity, inflammation and metabolism[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(04): 302-306.

持续炎症-免疫抑制-分解代谢综合征(PICS)是在全身性感染或非感染如创伤、烧伤、急性胰腺炎等进入慢性危重症阶段,以持续炎症反应、免疫抑制、蛋白质高分解代谢为特点的一组临床综合征。PICS患者免疫抑制、持续炎症及蛋白质高分解代谢之间存在复杂的交互对话,相互促进,互为因果。厘清PICS免疫、炎症和代谢之间的内在联系,具有重要临床意义。

Persistent inflammation- immunosuppression catabolism syndrome (PICS) is charactered by an immunocatabolic phenotype of persistent inflammation, immunosuppression, and catabolism in patients with chronic critical illness as a result of sepsis, trauma, burn, acute pancreatitis and so on. There is a complex interactive crosstalk between immune, inflammation and catabolism. It is of great clinical significance to clarify the internal association among immunity, inflammation and metabolism.

图1 PICS免疫-炎症-代谢关系示意图
1
Hawkins RB, Raymond SL, Stortz JA, et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome [J]. Front Immunol, 2018, 9: 1511.
2
Gentile LF, Cuenca AG, Efron PA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care [J]. J Trauma Acute Care Surg, 2012, 72(6): 1491-1501.
3
Stortz JA, Mira JC, Raymond SL, et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients [J]. J Trauma Acute Care Surg, 2018, 84(2): 342-349.
4
Stortz JA, Murphy TJ, Raymond SL, et al. Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis [J]. Shock, 2018, 49(3): 249-258.
5
Inoue S, Suzuki K, Komori Y, et al. Persistent inflammation and T cell exhaustion in severe sepsis in the elderly [J]. Crit Care, 2014, 18(3): R130.
6
刘军. 正确理解危重病免疫功能障碍免疫与炎症的关系 [J]. 中华医学杂志, 2017, 97(7): 483-486.
7
刘军. 对全身性感染免疫与炎症关系的思考 [J]. 中华急诊医学杂志, 2017, 26(11): 1230-1235.
8
Horiguchi H, Loftus TJ, Hawkins RB, et al. Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy [J]. Front Immunol, 2018, 9: 595.
9
Mira JC, Gentile LF, Mathias BJ, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome [J]. Crit Care Med, 2017, 45(2): 253-262.
10
Torgersen C, Moser P, Luckner G, et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis [J]. Anesth Analg, 2009, 108(6): 1841-1847.
11
Fattahi F, Ward PA. Understanding immunosuppression after sepsis [J]. Immunity, 2017, 47(1): 3-5.
12
Timmermans K, Kox M, Vaneker M, et al. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients [J]. Intensive Care Med, 2016, 42(4): 551-561.
13
Andreis DT, Singer M. Catecholamines for inflammatory shock: A Jekyll-and-Hyde conundrum [J]. Intensive Care Med, 2016, 42(9): 1387-1397.
14
Efron PA, Mohr AM, Bihorac A, et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery [J]. Surgery, 2018, 164(2): 178-184.
15
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age [J]. Nat Immunol, 2018, 19(2): 108-119.
16
Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism [J]. Eur J Immunol, 2017, 47(2): 225-235.
17
陈辉,杨毅. 持续性炎症-免疫抑制-分解代谢综合征:重症感染的真凶? [J]. 中华内科杂志,2015,54(8): 670-671.
18
Haimovich B, Zhang Z, Calvano JE, et al. Cellular metabolic regulators: novel indicators of low-grade inflammation in humans [J]. Ann Surg, 2014, 259(5): 999-1006.
19
Eyenga P, Roussel D, Morel J, et al. Time course of liver mitochondrial function and intrinsic changes in oxidative phosphorylation in a rat model of sepsis [J]. Intensive Care Med Exp, 2018, 6(1): 31.
20
Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock [J]. Lancet, 2002, 360(9328): 219-223.
21
Holmes D. Immunometabolism: physiologic role of IL-1β in glucose homeostasis [J]. Nat Rev Endocrinol, 2017, 13(3): 128.
22
Leavy O. Cytokines: regulating energy stores [J]. Nat Rev Immunol, 2011, 11(2): 76.
23
Peters-Golden M, Henderson WR Jr. Leukotrienes [J]. N Engl J Med, 2007, 357(18): 1841-1854.
24
Asehnoune K, Hotchkiss RS, Monneret G. Understanding why clinicians should care about danger-associated molecular patterns [J]. Intensive Care Med, 2016, 42(4): 611-614.
25
Zhao H, Kilgas S, Alam A, et al. The role of extracellular adenosine triphosphate in ischemic organ injury [J]. Crit Care Med, 2016, 44(5): 1000-1012.
26
Lee AH, Ledderose C, Li X, et al. Adenosine triphosphate release is required for toll-Like receptor-induced monocyte/macrophage activation, inflammasome signaling, interleukin-1β production, and the host immune response to infection [J]. Crit Care Med, 2018, 46(12): e1183-e1189.
27
Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system [J]. Nature, 2011, 474(7351): 327-336.
28
Cheng SC, Scicluna BP, Arts RJ, et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis [J]. Nat Immunol, 2016, 17(4): 406-413.
29
Kumar V. Targeting macrophage immunometabolism: dawn in the darkness of sepsis [J]. Int Immunopharmacol, 2018, 58: 173-185.
30
Dalli J, Colas RA, Quintana C, et al. Human Sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes [J]. Crit Care Med, 2017, 45(1): 58-68.
31
Gao Y, Zhang H, Luo L, et al. Resolvin D1 improves the resolution of inflammation via activating NF-κB p50/p50-mediated cyclooxygenase-2 expression in acute respiratory distress syndrome [J]. J Immunol, 2017, 199(6): 2043-2054.
32
Goverse G, Olivier BJ, Molenaar R, et al. Vitamin A metabolism and mucosal immune function are distinct between BALB/c and C57BL/6 mice [J]. Eur J Immunol, 2015, 45(1): 89-100.
33
Kim MH, Taparowsky EJ, Kim CH. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut [J]. Immunity, 2015, 43(1): 107-119.
34
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis [J]. Science, 2013, 341(6145): 569-573.
35
Bieghs V, Trautwein C. The innate immune response during liver inflammation and metabolic disease [J]. Trends Immunol, 2013, 34(9): 446-452.
[1] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[7] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[8] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[9] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[12] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?