1 |
Hawkins RB, Raymond SL, Stortz JA, et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome [J]. Front Immunol, 2018, 9: 1511.
|
2 |
Gentile LF, Cuenca AG, Efron PA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care [J]. J Trauma Acute Care Surg, 2012, 72(6): 1491-1501.
|
3 |
Stortz JA, Mira JC, Raymond SL, et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients [J]. J Trauma Acute Care Surg, 2018, 84(2): 342-349.
|
4 |
Stortz JA, Murphy TJ, Raymond SL, et al. Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis [J]. Shock, 2018, 49(3): 249-258.
|
5 |
Inoue S, Suzuki K, Komori Y, et al. Persistent inflammation and T cell exhaustion in severe sepsis in the elderly [J]. Crit Care, 2014, 18(3): R130.
|
6 |
刘军. 正确理解危重病免疫功能障碍免疫与炎症的关系 [J]. 中华医学杂志, 2017, 97(7): 483-486.
|
7 |
刘军. 对全身性感染免疫与炎症关系的思考 [J]. 中华急诊医学杂志, 2017, 26(11): 1230-1235.
|
8 |
Horiguchi H, Loftus TJ, Hawkins RB, et al. Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy [J]. Front Immunol, 2018, 9: 595.
|
9 |
Mira JC, Gentile LF, Mathias BJ, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome [J]. Crit Care Med, 2017, 45(2): 253-262.
|
10 |
Torgersen C, Moser P, Luckner G, et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis [J]. Anesth Analg, 2009, 108(6): 1841-1847.
|
11 |
Fattahi F, Ward PA. Understanding immunosuppression after sepsis [J]. Immunity, 2017, 47(1): 3-5.
|
12 |
Timmermans K, Kox M, Vaneker M, et al. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients [J]. Intensive Care Med, 2016, 42(4): 551-561.
|
13 |
Andreis DT, Singer M. Catecholamines for inflammatory shock: A Jekyll-and-Hyde conundrum [J]. Intensive Care Med, 2016, 42(9): 1387-1397.
|
14 |
Efron PA, Mohr AM, Bihorac A, et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery [J]. Surgery, 2018, 164(2): 178-184.
|
15 |
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age [J]. Nat Immunol, 2018, 19(2): 108-119.
|
16 |
Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism [J]. Eur J Immunol, 2017, 47(2): 225-235.
|
17 |
陈辉,杨毅. 持续性炎症-免疫抑制-分解代谢综合征:重症感染的真凶? [J]. 中华内科杂志,2015,54(8): 670-671.
|
18 |
Haimovich B, Zhang Z, Calvano JE, et al. Cellular metabolic regulators: novel indicators of low-grade inflammation in humans [J]. Ann Surg, 2014, 259(5): 999-1006.
|
19 |
Eyenga P, Roussel D, Morel J, et al. Time course of liver mitochondrial function and intrinsic changes in oxidative phosphorylation in a rat model of sepsis [J]. Intensive Care Med Exp, 2018, 6(1): 31.
|
20 |
Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock [J]. Lancet, 2002, 360(9328): 219-223.
|
21 |
Holmes D. Immunometabolism: physiologic role of IL-1β in glucose homeostasis [J]. Nat Rev Endocrinol, 2017, 13(3): 128.
|
22 |
Leavy O. Cytokines: regulating energy stores [J]. Nat Rev Immunol, 2011, 11(2): 76.
|
23 |
Peters-Golden M, Henderson WR Jr. Leukotrienes [J]. N Engl J Med, 2007, 357(18): 1841-1854.
|
24 |
Asehnoune K, Hotchkiss RS, Monneret G. Understanding why clinicians should care about danger-associated molecular patterns [J]. Intensive Care Med, 2016, 42(4): 611-614.
|
25 |
Zhao H, Kilgas S, Alam A, et al. The role of extracellular adenosine triphosphate in ischemic organ injury [J]. Crit Care Med, 2016, 44(5): 1000-1012.
|
26 |
Lee AH, Ledderose C, Li X, et al. Adenosine triphosphate release is required for toll-Like receptor-induced monocyte/macrophage activation, inflammasome signaling, interleukin-1β production, and the host immune response to infection [J]. Crit Care Med, 2018, 46(12): e1183-e1189.
|
27 |
Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system [J]. Nature, 2011, 474(7351): 327-336.
|
28 |
Cheng SC, Scicluna BP, Arts RJ, et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis [J]. Nat Immunol, 2016, 17(4): 406-413.
|
29 |
Kumar V. Targeting macrophage immunometabolism: dawn in the darkness of sepsis [J]. Int Immunopharmacol, 2018, 58: 173-185.
|
30 |
Dalli J, Colas RA, Quintana C, et al. Human Sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes [J]. Crit Care Med, 2017, 45(1): 58-68.
|
31 |
Gao Y, Zhang H, Luo L, et al. Resolvin D1 improves the resolution of inflammation via activating NF-κB p50/p50-mediated cyclooxygenase-2 expression in acute respiratory distress syndrome [J]. J Immunol, 2017, 199(6): 2043-2054.
|
32 |
Goverse G, Olivier BJ, Molenaar R, et al. Vitamin A metabolism and mucosal immune function are distinct between BALB/c and C57BL/6 mice [J]. Eur J Immunol, 2015, 45(1): 89-100.
|
33 |
Kim MH, Taparowsky EJ, Kim CH. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut [J]. Immunity, 2015, 43(1): 107-119.
|
34 |
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis [J]. Science, 2013, 341(6145): 569-573.
|
35 |
Bieghs V, Trautwein C. The innate immune response during liver inflammation and metabolic disease [J]. Trends Immunol, 2013, 34(9): 446-452.
|