切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (04): 359 -363. doi: 10.3877/cma.j.issn.2096-1537.2019.04.012

所属专题: 文献资源库

综述 上一篇    下一篇

生物标志物对急性胰腺炎严重程度的早期预测
贾媛媛 1, 赵冰 1, 马丽 1, 陈影 1, 盛慧球 1, 毛恩强 1, 陈尔真 1 , ( )   
  1. 1. 200025 上海交通大学医学院附属瑞金医院急诊科
  • 收稿日期:2018-12-31 出版日期:2019-11-28
  • 通信作者: 陈尔真
  • 基金资助:
    国家自然科学基金资助项目(81772107); 上海市科学技术委员会科研计划项目(18411966400); 上海市卫生计生系统重要薄弱学科建设计划任务书(2016ZB0206)

Advance of biological markers in study on early prediction value of acute pancreatitis

Yuanyuan Jia 1, Bing Zhao 1, Li Ma 1, Ying Chen 1, Huiqiu Sheng 1, Enqiang Mao 1, Erzhen Chen 1 , ( )   

  1. 1. Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2018-12-31 Published:2019-11-28
  • Corresponding author: Erzhen Chen
  • About author:
    Corresponding author: Chen Erzhen, Email:

急性胰腺炎是全球范围内三大消化道疾病之一,根据其严重程度可分为轻度急性胰腺炎、中度重症急性胰腺炎、重度急性胰腺炎。中、重度急性胰腺炎病情重、进展迅速、病死率高。早期识别急性胰腺炎严重程度并尽早加强护理与治疗,可改变患者病程、住院时间及病死率。生物标志物具有标本容易获取、检测重复性好、稳定性高等优点,寻找有效的早期评估急性胰腺炎病情的生物标志物有助于胰腺炎的诊疗。本文就生物标志物对急性胰腺炎严重程度的早期预测研究进展做一综述。

Acute pancreatitis is one of the three most important diseases of the digestive system in the worldwide. It can be categorized into mild acute pancreatitis (MAP), moderately severe acute pancreatitis (MSAP) and severe acute pancreatitis (SAP). MSAP and SAP are severe, rapid progress and high mortality disease. Early recognition of the severity of pancreatitis and early appropriate care can change the course of disease, short the hospital stay and reduce mortality. Biological markers have attracted much attention due to their accessibility, high reproducibility and stability. Finding out the effective biomarkers for early assessment of acute pancreatitis is helpful for diagnosis and treatment. We reviewed the advances of biological marker for AP severity early prediction.

1
Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus [J]. Gut, 2013, 62(1): 102-111.
2
Crockett SD, Wani S, Gardner TB, et al. American Gastroenterological Association Institute Guidelineon Initial Management of Acute Pancreatitis [J]. Gastroenterology, 2018, 154(4): 1096-1101.
3
Peery AF, Crockett SD, Murphy CC, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2018 [J]. Gastroenterology, 2018. DOI: 10.1053/j.gastro.2018.08.063.
4
Hazra N, Gulliford M. Evaluating pancreatitis in primary care: a population-based cohort study [J]. Br J Gen Pract, 2014, 64(622): e295-301.
5
Zahorec R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress incritically ill [J]. Bratisl Lek Listy, 2001, 102(1): 5-14.
6
Shen Y, Cui N, Miao B, et al. Immune dysregulation in patients with severe acute pancreatitis [J]. Inflammation, 2011, 34(1): 36-42.
7
Pinhu L, Qin Y, Xiong B, et al. Overexpression of Fas and FasL is associated with infectious complications and severity of experimental severe acute pancreatitis by promoting apoptosis of lymphocytes [J]. Inflammation, 2014, 37(4): 1202-1212.
8
Qi X, Yang F, Huang H, et al. A reduced lymphocyte ratio as an early marker for predicting acute pancreatitis [J]. Sci Rep, 2017, 7: 44087.
9
Jeon TJ, Park JY. Clinical significance of the neutrophil-lymphocyte ratio as an early predictive marker for adverse outcomes in patients with acute pancreatitis [J]. World J Gastroenterol, 2017, 23(21): 3883-3889.
10
Nigro KG, O′Riordan M, Molloy EJ, et al. Performance of an automated immature granulocyte count as a predictor of neonatal sepsis [J]. Am J Clin Pathol, 2005, 123(4): 618-624.
11
Zhu Y. Tumor necrosis factor-α and procalcitonin level variations in the serum and their effects on organ function in patients with severe acute pancreatitis during infected stage [J]. Pak J Pharm Sci, 2017, 30(4Suppl): 1413-1416.
12
Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant [J]. Eur J Biochem, 1999, 265(2): 501-523.
13
Urieli-Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states [J]. Curr Opin Hematol, 2000, 7(1): 64-69.
14
曹永献, 孙桂荣, 孙秀芳. 联合检测血清淀粉样蛋白A和C-反应蛋白对重症急性胰腺炎早期预测的临床意义 [J]. 临床内科杂志, 2008, 25(8): 553-554.
15
谷小玉, 黄尚书, 梁伟新, 等. SAA、NLR预测急性胰腺炎严重程度的价值 [J]. 中国医药导报, 2018, 15(16): 63-66.
16
Holwerda DA. Glycopeptide from the posterior lobe of pig pituitaries. isolation and characterization [J]. Eur J Biochem, 1972, 28(3): 334-339.
17
Urwyler SA, Schuetz P, Sailer C, et al. Copeptin as a stress marker prior and after a written examination--the CoEXAM study [J]. Stress, 2015, 18(1): 134-137.
18
Fenske W, Refardt J, Chifu I, et al. A copeptin-based approach in the diagnosis of diabetes insipidus [J]. N Engl J Med, 2018, 379(5): 428-439.
19
Lee JH, Chan YH, Lai OF, et al. Vasopressin and copeptin levels in children with sepsis and septic shock [J]. Intensive Care Med, 2013, 39(4): 747-53.
20
Staubli SM, Oertli D, Nebiker CA. Laboratory markers predicting severity of acute pancreatitis [J]. Crit Rev Clin Lab Sci, 2015, 52(6): 273-283.
21
Sang G, Du JM, Chen YY, et al. Plasma copeptin levels are associated with prognosis of severe acute pancreatitis [J]. Peptides, 2014, 51: 4-8.
22
Isman FK, Zulfikaroglu B, Isbilen B, et al. Copeptin is a predictive biomarker of severity in acute pancreatitis [J]. Am J Emerg Med, 2013, 31(4): 690-692.
23
Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice [J]. Gastroenterology, 2017, 154(3): 704-718.
24
Talukdar R, Sareen A, Zhu H, et al. Release of cathepsin-B in cytosol causes cell death in acute pancreatitis [J]. Gastroenterology, 2016, 151(4): 747-758. e5.
25
Gabrilovich D, Nefedova Y. ROR1C regulates differentiation of myeloid-derived suppressor cells [J]. Cancer Cell, 2015, 28(2): 147-149.
26
Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity [J]. Blood, 2008, 111(8): 4233-4244.
27
Uhel F, Azzaoui I, Grégoire M, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis [J]. Am J Respir Crit Care Med, 2017, 196(3): 315-327.
28
Samir M, Vaas LA, Pessler F. MicroRNAs in the host response to viral infections of veterinary importance [J]. Front Vet Sci, 2016, 3: 86.
29
Wei Q, Sun H, Song S, et al. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury [J]. J Clin Invest, 2018, 128(12): 5448-5464.
30
Braunwald E. The war against heart failure: the Lancet lecture [J]. Lancet, 2015, 385(9970): 812-824.
31
Patel M, Verma A, Aslam I, et al. Novel plasma microRNA biomarkers for the identifi cation of colitis-associated carcinoma [J]. Lancet, 2015, 385(Suppl1): S78.
32
Kuśnierz-Cabala B, Nowak E, Sporek M, et al. Serum levels of unique miR-551-5p and endothelial-specific miR-126a-5p allow discrimination of patients in the early phase of acute pancreatitis [J]. Pancreatology, 2015, 15(4): 344-351.
33
Liu S, Zou H, Wang Y, et al. miR-155-5p is negatively associated with acute pancreatitis and inversely regulates pancreatic acinar cell progression by targeting Rela and Traf3 [J]. Cell Physiol Biochem, 2018, 51(4): 1584-1599.
34
Song L, Wörmann S, Ai J, et al. BCL3 reduces the sterile inflammatory response in pancreatic and biliary tissues [J]. Gastroenterology, 2016, 150(2): 499-512.e20.
35
Criddle DN. Reactive oxygen species, Ca 2+ stores and acute pancreatitis; a step closer to therapy? [J]. Cell Calcium, 2016, 60(3): 180-189.
36
Manohar M, Verma AK, Venkateshaiah SU, et al. Pathogenic mechanisms of pancreatitis [J]. World J Gastrointest Pharmacol Ther, 2017, 8(1): 10-25.
37
Pan MG, Xiong Y, Chen F. Nfat gene family in inflammation and cancer [J]. Curr Mol Med, 2013, 13(4): 543-554.
38
Norberg KJ, Nania S, Li X, et al. RCAN1 is a marker of oxidative stress, induced in acute pancreatitis [J]. Pancreatology, 2018, 18(7): 734-741.
[1] 汪旭, 张劲松, 唐宁, 蒋静涵, 王淦楠, 娄爽, 周锋, 谢正伟. 蜂蛰伤严重程度相关因素的评估与分析[J]. 中华危重症医学杂志(电子版), 2021, 14(04): 275-280.
[2] 陈亮, 沈岩. 早期引流干预在重症急性胰腺炎治疗中的临床价值[J]. 中华危重症医学杂志(电子版), 2021, 14(03): 213-216.
[3] 王杰赞, 孟琳琳, 颜帅帅. 重症急性胰腺炎合并急性呼吸窘迫综合征患者拔管后序贯经鼻高流量氧疗30例分析[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 142-145.
[4] 王鲲鹏, 袁逸杰, 朱嘉琪, 张婷婷. LIN9基因在宫颈癌细胞中表达及其与人乳头瘤病毒16/18 E7表达的相关性[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(03): 196-201.
[5] 韩莹, 齐向秀, 刘丽娜. Roux-en-Y胃旁路术与袖状胃切除术治疗反复肥胖型急性高脂血症性胰腺炎的临床比较[J]. 中华普外科手术学杂志(电子版), 2021, 15(03): 347-350.
[6] 刘青, 王云超, 门同义, 高华宇, 王建宁. 心脏死亡器官捐献肾移植术后急性胰腺炎并发胸腔积液和过敏性紫癜一例[J]. 中华移植杂志(电子版), 2021, 15(01): 52-54.
[7] 农靖颖, 顾艳斐, 张毅. 晚期非小细胞肺癌免疫治疗预测生物标志物的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 536-538.
[8] 洪宇泽, 郑利平, 刘飞, 江晨. 血清Th2型细胞因子IL-6、IL-10评估社区获得性肺炎病情及预后意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 318-320.
[9] 韩蕾, 刘勇, 张秋霞. A2DS2和AIS-APS量表对老年脑卒中相关性肺炎的预测意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 335-337.
[10] 黄其密, 吴雪, 范婷, 李春花. 重症患者肠内营养与呼吸机相关性肺炎的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 393-396.
[11] 冯哲. CRRT治疗重症急性胰腺炎:时机与方案[J]. 中华肾病研究电子杂志, 2021, 10(03): 180-180.
[12] 杜晓艳, 黄蓉双, 马良, 付平. 脂肪酸结合蛋白4在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 44-46.
[13] 黄东亚, 苗毅, 蒋奎荣, 彭云鹏, 李强. 新型冠状病毒肺炎相关性急性胰腺炎:证据,挑战与思考[J]. 中华重症医学电子杂志, 2021, 07(02): 97-102.
[14] 王皓飞, 黄英姿. 细胞外囊泡在急性呼吸窘迫综合征中潜在作用的研究进展[J]. 中华重症医学电子杂志, 2021, 07(02): 174-179.
[15] 许庆玲, 张淑欣, 吴楚姗, 郑荣秀. 肥胖儿童黑棘皮病严重程度与胰岛素抵抗的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2021, 07(01): 30-35.
阅读次数
全文


摘要