1 |
Beesley SJ, Weber G, Sarge T, et al. Septic Cardiomyopathy. Critical care medicine [J]. 2018, 46(4): 625-634.
|
2 |
Sato R, Kuriyama A, Takada T, et al. Prevalence and risk factors of sepsis-induced cardiomyopathy: A retrospective cohort study[J]. Medicine, 2016, 95(39): e5031.
|
3 |
Jeong HS, Lee TH, Bang CH, et al. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: A comparative retrospective study[J]. Medicine, 2018, 97(13): e0263.
|
4 |
Vieillard-Baron A, Caille V, Charron C, et al. Actual incidence of global left ventricular hypokinesia in adult septic shock[J]. Critical Care Medicine, 2008, 36(6): 1701-1706.
|
5 |
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care. 2016, 4: 22.
|
6 |
Huang SJ, Nalos M, McLean AS. Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta-analysis[J]. Critical Care, 2013, 17(3): R96.
|
7 |
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy[J]. J Intensive Care, 2015, 3: 48.
|
8 |
Sweeney TE, Khatri P. Septic cardiomyopathy: getting to the heart of the matter[J]. Crit Care Med, 2017, 45(3): 556-557.
|
9 |
Sanfilippo F, Orde S, Oliveri F, et al. The challenging diagnosis of septic cardiomyopathy. Chest [J]. 2019, 156(3): 635-636.
|
10 |
Martin L, Derwall M, Al Zoubi S, et al. The septic heart: current understanding of molecular mechanisms and clinical implications[J]. Chest, 2019, 155(2): 427-437.
|
11 |
Ghadri JR, Wittstein IS, Prasad A, et al. International Expert Consensus Document on Takotsubo Syndrome (Part II): Diagnostic Workup, Outcome, and Management[J]. EurHeart J, 2018, 39(22): 2047-2062.
|
12 |
De Backer D, Pinsky M. Norepinephrine improves cardiac function during septic shock, but why?[J]. British Journal of Anaesthesia, 2018, 120(3): 421-424.
|
13 |
Hamzaoui O, Jozwiak M, Geffriaud T, et al. Norepinephrine exerts an inotropic effect during the early phase of human septic shock. British journal of anaesthesia [J]. 2018, 120(3): 517-524.
|
14 |
Annane D, Ouanes-Besbes L, de Backer D, et al. A global perspective on vasoactive agents in shock[J]. Intensive care medicine, 2018, 44(6): 833-846.
|
15 |
Rachoin JS, Dellinger RP. Timing of norepinephrine in septic patients: NOT too little too late[J]. Critical Care, 2014, 18(6):691.
|
16 |
Wilkman E, Kaukonen KM, Pettila V, etal. Association between inotrope treatment and 90-day mortality in patients with septic shock[J]. Acta Anaesthesiol Scand, 2013, 57(4): 431-442.
|
17 |
Sato R, Nasu M. Time to re-think the use of dobutamine in sepsis[J]. J Intensive Care. 2017, 5: 65.
|
18 |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016[J]. Intensive Care Medicine, 2017, 43(3): 304-377.
|
19 |
Nishida O, Ogura H, Egi M, et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016)[J]. J Intensive Care, 2018, 6: 7.
|
20 |
Zausig YA, Geilfus D, Missler G, et al. Direct cardiac effects of dobutamine, dopamine, epinephrine, and levosimendan in isolated septic rat hearts[J]. Shock, 2010, 34(3): 269-274.
|
21 |
Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial[J]. Lancet, 2007, 370(9588): 676-684.
|
22 |
Colling KP, Banton KL, Beilman GJ. Vasopressors in sepsis[J]. Surgical Infections, 2018, 19(2): 202-207.
|
23 |
Mahmoud KM, Ammar AS. Norepinephrine supplemented with dobutamine or epinephrine for the cardiovascular support of patients with septic shock[J]. Indian J Crit Care Med, 2012,16(2): 75-80.
|
24 |
Levy B. Lactate and shock state: the metabolic view[J]. Curr Opin Crit Care, 2006, 12(4): 315-321.
|
25 |
Levy B, Dusang B, Annane D, et al. Cardiovascular response to dopamine and early prediction of outcome in septic shock: a prospective multiple-center study[J]. Crit Care Med, 2005, 33(10): 2172-2177.
|
26 |
Treschan TA, Peters J. The vasopressin system: physiology and clinical strategies[J]. Anesthesiology, 2006, 105(3): 599-612; quiz 39-40.
|
27 |
Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock[J]. N Engl J Med, 2008, 358(9): 877-887.
|
28 |
Mehta S, Granton J, Gordon AC, et al. Cardiac ischemia in patients with septic shock randomized to vasopressin or norepinephrine[J]. Critical Care, 2013, 17(3): R117.
|
29 |
29Wasilewski MA, Grisanti LA, Song J, et al. Vasopressin type 1A receptor deletion enhances cardiac contractility, beta-adrenergic receptor sensitivity and acute cardiac injury-induced dysfunction[J]. Clin Sci (Lond), 2016, 130(22): 2017-2027.
|
30 |
Radermacher P, Huber-Lang M, Thiemermann C. Catecholamines and the septic heart: opening Pandora′s box?[J]. Shock, 2013, 39(4): 404-405.
|
31 |
Tan K, Harazim M, Tang B, et al. The association between premorbid beta blocker exposure and mortality in sepsis-a systematic review[J]. Critical Care, 2019, 23(1): 298.
|
32 |
Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial[J]. Jama, 2013, 310(16): 1683-1691.
|
33 |
Du W, Wang XT, Long Y, etal. Efficacy and Safety of Esmolol in Treatment of Patients with Septic Shock[J]. Chin Med J (Engl), 2016, 129(14): 1658-1665.
|
34 |
Morelli A, Donati A, Ertmer C, et al. Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study[J]. Critical Care Medicine, 2013, 41(9): 2162-2168.
|
35 |
Ehrman RR, Sullivan AN, Favot MJ, et al. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature[J]. Critical Care, 2018, 22(1): 112.
|