切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (03) : 252 -257. doi: 10.3877/cma.j.issn.2096-1537.2021.03.010

综述

机器学习在脓毒症诊治中的研究进展
姜莲莲1, 谢剑锋1, 杨毅1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2021-05-19 出版日期:2021-08-28
  • 通信作者: 杨毅
  • 基金资助:
    江苏省社会发展专项(BE2018743); 国家自然科学基金面上项目(81971888); 江苏省六大人才高峰项目(TD-SWYY-003)

Advances on machine learning in the diagnosis and treatment of sepsis

Lianlian Jiang1, Jianfeng Xie1, Yi Yang1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2021-05-19 Published:2021-08-28
  • Corresponding author: Yi Yang
引用本文:

姜莲莲, 谢剑锋, 杨毅. 机器学习在脓毒症诊治中的研究进展[J]. 中华重症医学电子杂志, 2021, 07(03): 252-257.

Lianlian Jiang, Jianfeng Xie, Yi Yang. Advances on machine learning in the diagnosis and treatment of sepsis[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(03): 252-257.

脓毒症是全球医疗面临的巨大挑战,目前存在的问题主要在于诊断的滞后性和治疗的非特异性。机器学习是从数据中生成知识的数据分析和建模技术,它通过预测未来事件为患者提供警报和建议,帮助临床医师获得经验之外的信息,从而辅助临床决策。近年来,机器学习在脓毒症领域的关注度不断升温,在脓毒症临床诊断、精准治疗和预后评估方面取得了一些突破性的进展,有望构建脓毒症诊断和治疗的新体系。本文对相关文章进行回顾,旨在明确机器学习目前在脓毒症诊疗方面的研究进展,为进一步研究提供方向。

As a big challenge of global healthcare, the main problems of sepsis are the delay of diagnosis and non-specificity of treatment. Machine learning is a data analysis and modeling technique that generates knowledge from data,which provides alarms and suggestions by predicting future events to help clinicians get information beyond their experiences and make decisions. Recently, the attention paid to machine learning has been on the rise in the field of sepsis. Some breakthroughs have already been made in the application of clinical diagnosis, precise treatment, prognostic evaluation of sepsis, which is potential to construct a new system for the diagnosis and treatment of sepsis. This paper reviews relevant articles to summarize advances on machine learning in the diagnosis and treatment of sepsis in order to show the direction for further researches.

1
Xie JF, Wang HL, Kang Y, et al. The epidemiology of sepsis in Chinese ICUs: A national cross-sectional survey [J]. Crit Care Med, 2020, 48(3): 1303-1310.
2
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
3
Rhodes A, Evans L, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016 [J]. Crit Care Med, 2016, 45(3): 486-552.
4
Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock [J]. N Engl J Med, 2001, 345(19): 1368-1377.
5
Nemati S, Holde A, Razmi F, et al. An interpretable machine learning model for accurate prediction of sepsis in the ICU [J]. Crit Care Med, 2018, 46(4): 547-553.
6
Burdick H, Pino E, Gabel-Comeau D, et al. Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals [J]. BMC Med Inform Decis Mak, 2020, 20(1): 276.
7
Wardi G, Carlile M, Holder A, et al. Predicting progression to septic shock in the emergency department using an externally generalizable machine-learning algorithm [J]. Ann Emerg Med, 2021, 77(4): 395-406.
8
Yang MC, Liu CY, Wang XY, et al. An explainable artificial intelligence predictor for early detection of sepsis [J]. Crit Care Med, 2020, 48(11): 1091-1096.
9
Islam MM, Nasrin T, Walther BA, et al. Prediction of sepsis patients using machine learning approach: a meta-analysis [J]. Comput Methods Programs Biomed, 2019, 170: 1-9.
10
Desautels T, Calvert J, Hoffman J, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach [J]. JMIR Med Inform, 2016, 4(3): 67-81.
11
Scherpf M, Gräßer F, Malberg H, et al. Predicting sepsis with a recurrent neural network using the MIMIC Ⅲ database [J]. Comput Biol Med, 2019, 113: 103395.
12
Danner OK, Hendren S, Santiago E, et al. Physiologically-based, predictive analytics using the heart-rate-to-Systolic-Ratio significantly improves the timeliness and accuracy of sepsis prediction compared to SIRS [J]. Am J Surg, 2017, 213(4): 617-621.
13
Taneja I, Reddy B, Damhorst G, et al. Combining biomarkers with EMR data to identify patients in different phases of sepsis [J].Sci Rep, 2017, 7(1): 10800.
14
Tsoukalas A, Albertson T, Tagkopoulos I. From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis [J]. JMIR Med Inform, 2015, 3 (1) : e11.
15
Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications [J]. Clin Microbiol Infect, 2020, 26(5): 584-595.
16
Luca FR, Lucas MF, Tingjie G, et al. Right Dose Right Now: bedside data-driven personalized antibiotic dosing in severe sepsis and septic shock-rationale and design of a multicenter randomized controlled superiority trial [J]. Trials, 2019, 20(1): 745.
17
Lin PC, Huang HC, Komorowski M, et al. A machine learning approach for predicting urine output after fluid administration [J]. Comput Methods Programs Biomed, 2019, 177: 155-159.
18
Bataille B, de Selle J, Moussot PE, et al. Machine learning methods to improve bedside fluid responsiveness prediction in severe sepsis or septic shock: an observational study [J]. Br J Anaesth, 2021, 126(4): 826-834.
19
Kwak GH, Ling Lowell, Hui Pan. Predicting the need for vasopressors in the intensive care unit using an attention based deep learning model [J]. Shock, 2021, 56(1): 73-79.
20
Komorowski M. Clinical management of sepsis can be improved by artificial intelligence: yes [J]. Intensive Care Med, 2020, 46(2): 375-377.
21
Pirracchio R, Hubbard A, Sprung CL, et al. Assessment of machine learning to estimate the individual treatment effect of corticosteroids in septic shock [J]. JAMA Netw Open, 2020, 3(12): e2029050.
22
Komorowski M, Celi LA, Badawi O, et al. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care [J]. Nat Med, 2018, 24(11): 1716-1720.
23
Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis [J]. JAMA, 2019, 321(20): 2003-2017.
24
Antcliffe DB, Burnham KL, Al-Beidh F, et al. Transcriptomic signatures in sepsis and a differential response to steroids: from the VANISH randomized trial [J]. Am J Respir Crit Care Med, 2019, 199(8): 980-986.
25
Scicluna BP, Vught LA, Aeilko HZ, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study [J]. Lancet Respir Med, 2017, 5(10): 816-826.
26
Zhang S, Wu Z, Chang W, et al. Classification of patients with sepsis according to immune cell characteristics: a bioinformatic analysis of two cohort studies [J]. Front Med (Lausanne), 2020, 7: 598652.
27
Wu Y, Zhang L, Zhang Y, et al. Bioinformatics analysis to screen for critical genes between survived and non survived patients with sepsis [J]. Mol Med Rep, 2018, 18(4): 3737-3743.
28
Wang LY, Ko ER, Gilchrist JJ, et al. Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis [J].Sci Adv, 2017, 3(3): e1602096.
29
Zador Z, Landry A, Cusimano MD, et al. Multimorbidity states associated with higher mortality rates in organ dysfunction and sepsis: a data-driven analysis in critical care [J]. Crit Care, 2019, 23(1): 247-258.
30
Gultepe E, Green JP, Nguyen H, et al. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system [J]. J Am Med Inform Assoc, 2014, 21(2): 315-325.
31
Henry KE, Hager DN, Pronovost PJ, et al. A targeted real-time early warning score (TREWScore) for septic shock [J]. Sci Transl Med, 2015, 7: 299ra122.
32
Layeghian JS, Sepehri MM, Layeghian JM, et al. An intelligent warning model for early prediction of cardiac arrest in sepsis patients [J]. Comput Methods Programs Biomed, 2019, 178: 47-58.
33
Hasegawa D, Yamakawa K, Nishida K, et al. Comparative analysis of three machine-learning techniques and conventional techniques for predicting sepsis-induced coagulopathy progression [J]. J Clin Med, 2020, 9(7): 2113.
34
Chicco D, Oneto L. Data analytics and clinical feature ranking of medical records of patients with sepsis [J]. BioData Min, 202, 14(1): 12.
35
Hou N, Li M, He L, et al. Predicting 30-days mortality for MIMIC-Ⅲ patients with sepsis-3: a machine learning approach using XGboost [J]. J Transl Med, 2020, 18(1): 462.
36
Wernly B, Mamandipoor B, Baldia P, et al.Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation [J]. Int J Med Inform, 2021, 145: 104312.
37
Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial [J]. BMJ Open Respir Res, 2017, 4(1): e000234.
38
Giannini HM, Ginestra JC, Chivers C, et al. A machine learning algorithm to predict severe sepsis and septic shock: development, implementation, and impact on clinical practice [J]. Crit Care Med, 2019, 47(11): 1485-1492.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[3] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[4] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[5] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[6] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[9] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[10] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[11] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[12] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要