切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (04) : 321 -348. doi: 10.3877/cma.j.issn.2096-1537.2023.04.001

指南与规范

中国成人ICU患者营养评估与监测临床实践指南
中华医学会重症医学分会   
  • 收稿日期:2023-08-29 出版日期:2023-11-28
  • 基金资助:
    吴阶平医学基金会“重症营养标准化治疗研讨项目”专项资助项目。基金用以承担指南制订过程中的科研费、材料费及项目组织实施等费用,资助机构不影响整个指南的制订过程

Clinical practice guidelines of nutrition assessment and monitoring for adult patients in the ICU of China

Chinese Society of Critical Care Medicine, Chinese Medical Association   

  • Received:2023-08-29 Published:2023-11-28
引用本文:

中华医学会重症医学分会. 中国成人ICU患者营养评估与监测临床实践指南[J]. 中华重症医学电子杂志, 2023, 09(04): 321-348.

Chinese Society of Critical Care Medicine, Chinese Medical Association. Clinical practice guidelines of nutrition assessment and monitoring for adult patients in the ICU of China[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(04): 321-348.

为实现监测指导下的危重症个体化营养治疗的理想目标,中华医学会重症医学分会(CSCCM)组织专家制订了针对中国成人重症监护病房(ICU)患者营养评估与监测的临床实践指南。指南构成与编写由重症领域专家及循证指南方法学专家共同完成,经过临床问题收集与遴选,证据检索与系统评价,形成推荐意见并通过重症医学、临床营养学等多学科专家讨论,审阅,达成共识。最终形成基于当前可得证据的18条临床问题的推荐意见,主要涉及营养风险筛查与评估、肠内营养不耐受评估与判断、营养治疗中代谢与营养监测、营养供给相关的器官功能评价几个方面。按照PICO原则对每个问题逐一进行解构。此外,对于未达成共识但可能具有临床意义及进一步研究价值的4个问题进行了诠释。计划在3~5年内按照国际指南更新方法(CheckUp)对本指南的推荐意见进行更新。

The Chinese Society of Critical Care Medicine (CSCCM) has developed the clinical practice guidelines of nutrition assessment and monitoring for patients in adult intensive care unit (ICU) of China. This guideline focuses on nutrition assessment and metabolic monitoring to achieve the optimal and individualized nutrition therapy for critical ill patients. This guideline was made by experts in critical care medicine and evidence-based medicine methodology and was developed after a thorough system review and summary of relevant trials or studies published from 2000 to July 2023. A total of 18 recommendations were formed and consensus was reached through discussions and review by expert groups in critical care medicine, parenteral and enteral nutrition, and surgery. The recommendations are based on the currently available evidence and cover several key fields, including nutrition risk screening and assessment, evaluation and assessment of enteral feeding intolerance, metabolic and nutritional measurement and monitoring during nutrition therapy, and organ function evaluation related to nutrition supply. Each question was analyzed according to the PICO principle. In addition, interpretations were provided for four questions that did not reach a consensus but may have potential clinical and research value. The plan is to update this nutrition assessment and monitoring guideline using the international guideline update method within 3 to 5 years.

表1 中国成人ICU患者营养评估与监测临床实践指南临床问题及推荐意见
临床问题 推荐意见 共识度(%)
临床问题1:NRS-2002与mNUTRIC评分量表能否用于重症患者的常规营养风险筛查? 建议重症患者入ICU后48 h内,使用NRS-2002或者NUTRIC评分(或者mNUTRIC评分)对重症患者进行营养风险筛查。NRS-2002评分≥5分或者mNUTRIC评分≥5分时应考虑患者存在高营养风险,应尽快启动全面的营养评估与营养治疗,以改善患者预后(弱推荐,低质量证据) 88.57
临床问题2:SGA可否用于危重症患者的常规营养评定? 建议使用SGA作为危重症患者营养评定的量表工具(弱推荐,低质量证据) 88.57
临床问题3:血浆蛋白(ALB、PAB)能否作为重症患者营养筛查与评定的参考指标? 3.1 建议ALB或PAB用于重症患者营养风险筛查(弱推荐,低质量证据) 80.00
3.2 不建议ALB或PAB用于重症患者急性炎症早期营养状态评定(弱推荐,极低质量证据) 77.14
临床问题4:骨骼肌或LBM能否用于重症患者的营养风险筛查及营养评定? 推荐应用骨骼肌或LBM进行重症患者的营养风险筛查及营养评定(强推荐,中等质量证据) 85.71
临床问题5:评估重症患者骨骼肌或LBM的可靠方法有哪些? 建议采用超声法、BIA法对重症患者骨骼肌或LBM进行实时动态个体化评估(弱推荐,低质量证据) 80.00
临床问题6:如何临床判断EN FI,基于EN喂养量还是即时GIS? 建议EN FI判定为喂养过程中出现以HGRV为主症状的2项及以上GIS;或连续72 h喂养量<20 kcal/(kg•d)(弱推荐,低质量证据) 91.43
临床问题7:胃肠超声能否预测重症患者EN FI? 对于进行EN的重症患者,建议应用胃肠道超声预测FI(弱推荐,低质量证据) 77.14
临床问题8:监测IAP能否预测重症患者EN FI? 不建议常规监测IAP来预测重症患者EN FI(弱推荐,极低质量证据) 82.86
临床问题9:重症患者营养治疗期间是否需要进行能量代谢评价? 建议重症患者营养治疗期间采用IC测定实际能量消耗并指导能量供给(弱推荐,低质量证据) 80.00
临床问题10:重症患者营养治疗期间是否需要监测血浆PAB水平? 建议重症患者营养治疗期间监测血浆PAB水平,用于评价代谢状态与营养治疗的反应(弱推荐,极低质量证据) 97.14
临床问题11:重症患者营养治疗期间是否需要进行UCR监测? 建议重症患者营养治疗期间进行UCR监测(弱推荐,低质量证据) 91.43
临床问题12:存在RFS风险的重症患者营养治疗期间是否需要监测血磷? 建议存在RFS风险的重症患者,营养治疗前及营养治疗期间监测血磷水平(弱推荐,极低质量证据) 88.57
临床问题13:重症患者营养治疗期间是否需要监测血糖? 建议重症患者营养治疗期间应动态监测血糖(弱推荐,极低质量证据) 100.00
临床问题14:CGM是否有助于重症患者营养治疗期间的血糖管理? 推荐重症患者营养治疗期间,有条件的医院可以开展进行CGM(强推荐,中等质量证据) 82.86
临床问题15:重症患者EEN期间是否需要关注肠道灌注相关指标? 建议对于未撤离血管活性药物的重症患者,EEN期间需要动态监测血压、血管活性药用量、乳酸、皮肤斑点评分等灌注指标(弱推荐,极低质量证据) 91.43
临床问题16:重症患者营养治疗期间是否需要监测胆红素与胆汁淤积? 建议需要长时间TPN和(或)肝功能障碍的重症患者,动态监测血胆红素及胆汁淤积。建议使用血胆红素评估TPN相关的肝内胆汁淤积,使用腹部超声评估肝外胆汁淤积(弱推荐,极低质量证据) 100.00
临床问题17:重症患者营养治疗期间是否需要监测三酰甘油? 建议重症患者,尤其急性胰腺炎、严重烧伤的重症患者,营养治疗期间进行三酰甘油监测(弱推荐,极低质量证据) 94.29
临床问题18:合并肾功能损害(AKI/CKD)以及接受RRT的重症患者进行营养治疗时,是否需要常规监测电解质与酸碱平衡? 建议合并急/慢性肾脏损伤以及接受RRT治疗的重症患者进行营养治疗时监测电解质水平与酸碱平衡(良好实践声明) 100.00
图1 中国成人ICU患者营养评估与监测临床实践的流程及推荐意见 注:NRS-2002为营养风险筛查-2002;mNUTRIC为改良危重病营养风险;NUTRIC为危重病营养风险;SGA为主观整体评估量表;ALB为白蛋白;PAB为前白蛋白;LBM为瘦体组织含量;BIA为生物电阻抗分析;EN为肠内营养;FI为喂养不耐受;GIS为胃肠道症状;HGRV为高胃残余量;IAP为腹内压;IC为间接测热法;UCR为尿素/肌酐;RFS为再喂养综合征;CGM为连续血糖监测;EEN为早期肠内营养;TPN为完全肠外营养;AKI为急性肾损伤;CKD为慢性肾脏病;RRT为肾脏替代治疗
1
中华医学会. 临床诊疗指南·肠外肠内营养学分册 [M]. 北京: 人民卫生出版社, 2008.
2
Kondrup J, Rasmussen HH, Hamberg O, et al; Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials [J]. Clin Nutr, 2003, 22(3): 321-336.
3
Teitelbaum D, Guenter P, Howell WH, et al. Definition of terms, style, and conventions used in A.S.P.E.N. guidelines and standards [J]. Nutr Clin Pract, 2005, 20(2): 281-285.
4
Lochs H, Allison SP, Meier R, et al. Introductory to the ESPEN Guidelines on Enteral Nutrition: terminology, definitions and general topics [J]. Clin Nutr, 2006, 25(2): 180-186.
5
Kondrup J. Nutritional-risk scoring systems in the intensive care unit [J]. Curr Opin Clin Nutr Metab Care, 2014, 17(2): 177-182.
6
Ishibashi N, Plank LD, Sando K, et al. Optimal protein requirements during the first 2 weeks after the onset of critical illness [J]. Crit Care Med, 1998, 26(9): 1529-1535.
7
中华医学会. 临床技术操作规范·肠外肠内营养学分册 [M]. 北京: 人民军医出版社, 2008.
8
Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit [J]. Clin Nutr, 2019, 38(1): 48-79.
9
McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) [J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 159-211.
10
Jie B, Jiang ZM, Nolan MT, et al. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk [J]. Nutrition, 2012, 28(10): 1022-1027.
11
Kondrup J, Allison SP, Elia M, et al. ESPEN guidelines for nutrition screening 2002 [J]. Clin Nutr, 2003, 22(4): 415-421.
12
Heyland DK, Dhaliwal R, Jiang X, et al. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool [J]. Crit Care, 2011, 15(6): R268.
13
Moretti D, Bagilet DH, Buncuga M, et al. Study of two variants of nutritional risk score “NUTRIC” in ventilated critical patients [J]. Nutr Hosp, 2014, 29(1): 166-172.
14
Mendes R, Policarpo S, Fortuna P, et al. Nutritional risk assessment and cultural validation of the modified NUTRIC score in critically ill patients-a multicenter prospective cohort study [J]. J Crit Care, 2017, 37: 249.
15
Lee ZY, Noor Airini I, Barakatun-Nisak MY. Relationship of energy and protein adequacy with 60-day mortality in mechanically ventilated critically ill patients: a prospective observational study [J]. Clin Nutr, 2018, 37(4): 1264-1270.
16
Mukhopadhyay A, Henry J, Ong V, et al. Association of modified NUTRIC score with 28-day mortality in critically ill patients [J]. Clin Nutr, 2017, 36(4): 1143-1148.
17
Kalaiselvan MS, Renuka MK, Arunkumar AS. Use of nutrition risk in critically ill (NUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study [J]. Indian J Crit Care Med, 2017, 21(5): 253-256.
18
Coltman A, Peterson S, Roehl K, et al. Use of 3 tools to assess nutrition risk in the intensive care unit [J]. JPEN J Parenter Enteral Nutr, 2015, 39(1): 28-33.
19
Özbilgin Ş, Hancı V, Ömür D, et al. Morbidity and mortality predictivity of nutritional assessment tools in the postoperative care unit [J]. Medicine (Baltimore), 2016, 95(40): e5038.
20
de Vries MC, Koekkoek WK, Opdam MH, et al. Nutritional assessment of critically ill patients: validation of the modified NUTRIC score [J]. Eur J Clin Nutr, 2018, 72(3): 428-435.
21
Compher C, Chittams J, Sammarco T, et al. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a multicenter, multinational observational study [J]. Crit Care Med, 2017, 45(2): 156-163.
22
Machado Dos Reis A, Marchetti J, Forte Dos Santos A, et al. NUTRIC score: isolated and combined use with the NRS-2002 to predict hospital mortality in critically ill patients [J]. JPEN J Parenter Enteral Nutr, 2020, 44(7): 1250-1256.
23
Viana MV, Pantet O, Bagnoud G, et al. Metabolic and nutritional characteristics of long-stay critically ill patients [J]. J Clin Med, 2019, 8(7).
24
Marchetti J, Reis AMD, Santos AFD, et al. High nutritional risk is associated with unfavorable outcomes in patients admitted to an intensive care unit [J]. Rev Bras Ter Intensiva, 2019, 31(3): 326-332.
25
Li G, Zhou CL, Ba YM, et al. Nutritional risk and therapy for severe and critical COVID-19 patients: a multicenter retrospective observational study [J]. Clin Nutr, 2021, 40(4): 2154-2161.
26
Chourdakis M, Grammatikopoulou MG, Poulia KA, et al. Translation of the modified NUTRIC score and adaptation to the Greek ICU setting [J]. Clin Nutr ESPEN, 2019, 29: 72-76.
27
Tsai MH, Huang HC, Peng YS, et al. Nutrition risk assessment using the modified NUTRIC score in cirrhotic patients with acute gastroesophageal variceal bleeding: prevalence of high nutrition risk and its independent prognostic value [J]. Nutrients, 2019, 11(9): 2152.
28
Oliveira ML, Heyland DK, Silva FM, et al. Complementarity of modified NUTRIC score with or without C-reactive protein and subjective global assessment in predicting mortality in critically ill patients [J]. Rev Bras Ter Intensiva, 2019, 31(4): 490-496.
29
Jeong DH, Hong SB, Lim CM, et al. Comparison of accuracy of NUTRIC and modified NUTRIC scores in predicting 28-day mortality in patients with sepsis: a single center retrospective study [J]. Nutrients, 2018, 10(7): 911.
30
Lew CCH, Wong GJY, Cheung KP, et al. The association between nutritional adequacy and 28-day mortality in the critically ill is not modified by their baseline nutritional status and disease severity [J]. Crit Care, 2019, 23(1): 222.
31
Mayr U, Pfau J, Lukas M, et al. NUTRIC and modified NUTRIC are accurate predictors of outcome in end-stage liver disease: a validation in critically ill patients with liver cirrhosis [J]. Nutrients, 2020, 12(7): 2134.
32
Majari K, Imani H, Hosseini S, et al. Comparison of modified NUTRIC, NRS-2002, and MUST scores in Iranian critically ill patients admitted to Intensive Care Units: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(7): 1504-1513.
33
Zhang P, Bian Y, Tang Z, et al. Use of nutrition risk in critically ill (NUTRIC) scoring system for nutrition risk assessment and prognosis prediction in critically ill neurological patients: a prospective observational study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(5): 1032-1041.
34
Brascher JMM, Peres WAF, Padilha PC. Use of the modified "Nutrition risk in the critically ill" score and its association with the death of critically ill patients [J]. Clin Nutr ESPEN, 2020, 35: 162-166.
35
Lew CCH, Cheung KP, Chong MFF, et al. Combining 2 commonly adopted nutrition instruments in the critical care setting is superior to administering either one alone [J]. JPEN J Parenter Enteral Nutr, 2017: 148607117726060.
36
Ata Ur-Rehman HM, Ishtiaq W, Yousaf M, et al. Modified nutrition risk in critically ill (mNUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study from the Pakistani Population [J]. Cureus, 2018, 10(12): e3786.
37
Kumar S, Gattani SC, Baheti AH, et al. Comparison of the performance of APACHE Ⅱ, SOFA, and mNUTRIC scoring systems in critically ill patients: a 2-year cross-sectional study [J]. Indian J Crit Care Med, 2020, 24(11): 1057-1061.
38
Lew CCH, Wong GJY, Cheung KP, et al. When timing and dose of nutrition support were examined, the modified nutrition risk in critically ill (mNUTRIC) score did not differentiate high-risk patients who would derive the most benefit from nutrition support: a prospective cohort study [J]. Ann Intensive Care, 2018, 8(1): 98.
39
da Silva Fink J, Daniel de Mello P, Daniel de Mello E. Subjective global assessment of nutritional status - a systematic review of the literature [J]. Clin Nutr, 2015, 34(5): 785-792.
40
Caporossi FS, Caporossi C, Borges Dock-Nascimento D, et al. Measurement of the thickness of the adductor pollicis muscle as a predictor of outcome in critically ill patients [J]. Nutr Hosp, 2012, 27(2): 490-495.
41
Lomivorotov VV, Efremov SM, Boboshko VA, et al. Prognostic value of nutritional screening tools for patients scheduled for cardiac surgery [J]. Interact Cardiovasc Thorac Surg, 2013, 16(5): 612-618.
42
Fontes D, Generoso Sde V, Toulson Davisson Correia MI. Subjective global assessment: a reliable nutritional assessment tool to predict outcomes in critically ill patients [J]. Clin Nutr, 2014, 33(2): 291-295.
43
Sheean PM, Peterson SJ, Gurka DP, et al. Nutrition assessment: the reproducibility of subjective global assessment in patients requiring mechanical ventilation [J]. Eur J Clin Nutr, 2010, 64(11): 1358-1364.
44
Guigoz Y. The Mini Nutritional Assessment (MNA) review of the literature--what does it tell us? [J]. J Nutr Health Aging, 2006, 10(6): 466-485; discussion 485-487.
45
Dent E, Visvanathan R, Piantadosi C, et al. Use of the Mini Nutritional Assessment to detect frailty in hospitalised older people [J]. J Nutr Health Aging, 2012, 16(9): 764-767.
46
Lew CCH, Yandell R, Fraser RJL, et al. Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review [J]. JPEN J Parenter Enteral Nutr, 2017, 41(5): 744-758.
47
Sheean PM, Peterson SJ, Chen Y, et al. Utilizing multiple methods to classify malnutrition among elderly patients admitted to the medical and surgical intensive care units (ICU) [J]. Clin Nutr, 2013, 32(5): 752-757.
48
Merli M, Giusto M, Gentili F, et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation [J]. Liver Int, 2010, 30(2): 208-214.
49
Gattermann Pereira T, da Silva Fink J, Tosatti J, et al. Subjective global assessment can be performed in critically ill surgical patients as a predictor of poor clinical outcomes [J]. Nutr Clin Pract, 2019, 34(1): 131-136.
50
Karst FP, Vieira RM, Barbiero S. Relationship between adductor pollicis muscle thickness and subjective global assessment in a cardiac intensive care unit [J]. Rev Bras Ter Intensiva, 2015, 27(4): 369-375.
51
Sheean PM, Peterson SJ, Zhao W, et al. Intensive medical nutrition therapy: methods to improve nutrition provision in the critical care setting [J]. J Acad Nutr Diet, 2012, 112(7): 1073-1079.
52
Atalay BG, Yagmur C, Nursal TZ, et al. Use of subjective global assessment and clinical outcomes in critically ill geriatric patients receiving nutrition support [J]. JPEN J Parenter Enteral Nutr, 2008, 32(4): 454-459.
53
Bector S, Vagianos K, Suh M, et al. Does the subjective global assessment predict outcome in critically ill medical patients? [J]. J Intensive Care Med, 2016, 31(7): 485-489.
54
Sungurtekin H, Sungurtekin U, Oner O, et al. Nutrition assessment in critically ill patients [J]. Nutr Clin Pract, 2008, 23(6): 635-641.
55
Verghese PP, Mathai AS, Abraham V, et al. Assessment of malnutrition and enteral feeding practices in the critically ill: a single-centre observational study [J]. Indian J Anaesth, 2018, 62(1): 29-35.
56
Spiekerman AM. Nutritional assessment (protein nutriture) [J]. Anal Chem, 1995, 67(12): 429R-436R.
57
Cui N, Tong H, Li Y, et al. Role of prealbumin in predicting the prognosis of severely and critically ill COVID-19 patients [J]. Am J Trop Med Hyg, 2021, 105(3): 718-726.
58
毕红英, 唐艳, 王迪芬. 重症患者的营养风险评估及其预后分析 [J]. 中华危重病急救医学, 2016, 28(6): 557-562.
59
Bretschera C, Boesiger F, Kaegi-Braun N, et al. Admission serum albumin concentrations and response to nutritional therapy in hospitalised patients at malnutrition risk: Secondary analysis of a randomised clinical trial [J]. EClinicalMedicine, 2022, 45: 101301.
60
Bretscher C, Buergin M, Gurzeler G, et al. Association between prealbumin, all-cause mortality, and response to nutrition treatment in patients at nutrition risk: secondary analysis of a randomized controlled trial [J]. JPEN J Parenter Enteral Nutr, 2023, 47(3): 408-419.
61
Stoppe C, Wendt S, Mehta NM, et al. Biomarkers in critical care nutrition [J]. Crit Care, 2020, 24(1): 499.
62
Davis CJ, Sowa D, Keim KS, et al. The use of prealbumin and C-reactive protein for monitoring nutrition support in adult patients receiving enteral nutrition in an urban medical center [J]. JPEN J Parenter Enteral Nutr, 2012, 36(2): 197-204.
63
Yeh DD, Johnson E, Harrison T, et al. Serum levels of albumin and prealbumin do not correlate with nutrient delivery in surgical intensive care unit patients [J]. Nutr Clin Pract, 2018, 33(3): 419-425.
64
Evans DC, Corkins MR, Malone A, et al. The use of visceral proteins as nutrition markers: an ASPEN position paper [J]. Nutr Clin Pract, 2021, 36(1): 22-28.
65
Moisey LL, Mourtzakis M, Cotton BA, et al; Nutrition and Rehabilitation Investigators Consortium (NUTRIC). Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients [J]. Crit Care, 2013, 17(5): R206.
66
Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness [J]. JAMA, 2013, 310(15): 1591-600.
67
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states [J]. J Am Soc Nephrol, 2006, 17(7): 1807-1819.
68
Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass [J]. Cell Metab, 2009, 10(6): 507-515.
69
Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness [J]. Intensive Care Med, 2020, 46(4): 637-653.
70
Puthucheary Z, Montgomery H, Moxham J, et al. Structure to function: muscle failure in critically ill patients [J]. J Physiol, 2010, 588(Pt 23): 4641-4648.
71
Schefold JC, Wollersheim T, Grunow JJ, et al. Muscular weakness and muscle wasting in the critically ill [J]. J Cachexia Sarcopenia Muscle, 2020, 11(6): 1399-1412.
72
Cruz-Jentoft AJ, Bahat G, Bauer J, et al; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(1): 16-31.
73
Parry SM, El-Ansary D, Cartwright MS, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function [J]. J Crit Care, 2015, 30(5): 1151.e9-14.
74
Razzera EL, Marcadenti A, Rovedder SW, et al. Parameters of bioelectrical impedance are good predictors of nutrition risk, length of stay, and mortality in critically ill patients: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2020, 44(5): 849-854.
75
Mayer KP, Thompson Bastin ML, Montgomery-Yates AA, et al. Acute skeletal muscle wasting and dysfunction predict physical disability at hospital discharge in patients with critical illness [J]. Crit Care, 2020, 24(1): 637.
76
Jiang T, Lin T, Shu X, et al. Prevalence and prognostic value of preexisting sarcopenia in patients with mechanical ventilation: a systematic review and meta-analysis [J]. Crit Care, 2022, 26(1): 140.
77
Tagawa R, Watanabe D, Ito K, et al. Dose-response relationship between protein intake and muscle mass increase: a systematic review and meta-analysis of randomized controlled trials [J]. Nutr Rev, 2020, 79(1): 66-75.
78
Hickmann CE, Castanares-Zapatero D, Deldicque L, et al. Impact of very early physical therapy during septic shock on skeletal muscle: a randomized controlled trial [J]. Crit Care Med, 2018, 46(9): 1436-1443.
79
Hwang Y, Lee YH, Cho DH, et al. Applicability of the masseter muscle as a nutritional biomarker [J]. Medicine (Baltimore), 2020, 99(6): e19069.
80
Özdemir U, Özdemir M, Aygencel G, et al. The role of maximum compressed thickness of the quadriceps femoris muscle measured by ultrasonography in assessing nutritional risk in critically-ill patients with different volume statuses [J]. Rev Assoc Med Bras (1992), 2019, 65(7): 952-958.
81
李强, 李雪霓, 冷玉鑫, 等. 多频生物电阻抗技术评估重度营养不良患者营养状态: 一项多中心前瞻性研究 [J]. 中华危重病急救医学, 2018, 30(2): 181-184.
82
Sunario J, Wibrow B, Jacques A, et al. Associations between nutrition markers and muscle mass on bioimpedance analysis in patients receiving parenteral nutrition [J]. JPEN J Parenter Enteral Nutr, 2021, 45(5): 1089-1099.
83
Pereira TG, da Silva Fink J, Silva FM. Thickness of the adductor pollicis muscle: accuracy in predicting malnutrition and length of intensive care unit stay in critically ill surgical patients: thickness of the adductor pollicis muscle in surgical critically patients [J]. Clin Nutr ESPEN, 2018, 24: 165-169.
84
Mitsiopoulos N, Baumgartner RN, Heymsfield SB, et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography [J]. J Appl Physiol (1985), 1998, 85(1): 115-122.
85
Bury C, DeChicco R, Nowak D, et al. Use of bedside ultrasound to assess muscle changes in the critically ill surgical patient [J]. JPEN J Parenter Enteral Nutr, 2021, 45(2): 394-402.
86
Lambell KJ, Tierney AC, Wang JC, et al. Comparison of ultrasound-derived muscle thickness with computed tomography muscle cross-sectional area on admission to the Intensive Care Unit: a pilot cross-sectional study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(1): 136-145.
87
Arai Y, Nakanishi N, Ono Y, et al. Ultrasound assessment of muscle mass has potential to identify patients with low muscularity at intensive care unit admission: a retrospective study [J]. Clin Nutr ESPEN, 2021, 45: 177-183.
88
Tourel C, Burnol L, Lanoiselé J, et al. Reliability of standardized ultrasound measurements of quadriceps muscle thickness in neurological critically ill patients: a comparison to computed tomography measures [J]. J Rehabil Med, 2020, 52(3): jrm00032.
89
Paris MT, Mourtzakis M, Day A, et al. Validation of bedside ultrasound of muscle layer thickness of the quadriceps in the critically ill patient (VALIDUM Study) [J]. JPEN J Parenter Enteral Nutr, 2017, 41(2): 171-180.
90
Fetterplace K, Corlette L, Abdelhamid YA, et al. Assessment of muscle mass using ultrasound with minimal versus maximal pressure compared with computed tomography in critically ill adult patients [J]. Aust Crit Care, 2021, 34(4): 303-310.
91
Baldwin CE, Bersten AD. Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated [J]. Phys Ther, 2014, 94(1): 68-82.
92
Segers J, Hermans G, Charususin N, et al. Assessment of quadriceps muscle mass with ultrasound in critically ill patients: intra- and inter-observer agreement and sensitivity [J]. Intensive Care Med, 2015, 41(3): 562-563.
93
Pita A, Ziogas IA, Ye F, et al. Feasibility of serial ultrasound measurements of the rectus femoris muscle area to assess muscle loss in patients awaiting liver transplantation in the Intensive Care Unit [J]. Transplant Direct, 2020, 6(11): e618.
94
Sabatino A, Regolisti G, di Mario F, et al. Validation by CT scan of quadriceps muscle thickness measurement by ultrasound in acute kidney injury [J]. J Nephrol, 2020, 33(1): 109-117.
95
Weinel LM, Summers MJ, Chapple LA. Ultrasonography to measure quadriceps muscle in critically ill patients: a literature review of reported methodologies [J]. Anaesth Intensive Care, 2019, 47(5): 423-434.
96
Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis--part Ⅰ: review of principles and methods [J]. Clin Nutr, 2004, 23(5): 1226-1243.
97
Mulasi U, Kuchnia AJ, Cole AJ, et al. Bioimpedance at the bedside: current applications, limitations, and opportunities [J]. Nutr Clin Pract, 2015, 30(2): 180-193.
98
Moonen H, van Zanten A. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness [J]. Curr Opin Crit Care, 2021, 27(4): 344-353.
99
Mundi MS, Patel JJ, Martindale R. Body composition technology: implications for the ICU [J]. Nutr Clin Pract, 2019, 34(1): 48-58.
100
Pardo E, El Behi H, Boizeau P, et al. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients [J]. BMC Anesthesiol, 2018, 18(1): 205.
101
Looijaard W, Stapel SN, Dekker IM, et al. Identifying critically ill patients with low muscle mass: agreement between bioelectrical impedance analysis and computed tomography [J]. Clin Nutr, 2020, 39(6): 1809-1817.
102
Kim D, Sun JS, Lee YH, et al. Comparative assessment of skeletal muscle mass using computerized tomography and bioelectrical impedance analysis in critically ill patients [J]. Clin Nutr, 2019, 38(6): 2747-2755.
103
Lambell KJ, Earthman CP, Tierney AC, et al. How does muscularity assessed by bedside methods compare to computed tomography muscle area at intensive care unit admission? A pilot prospective cross-sectional study [J]. J Hum Nutr Diet, 2021, 34(2): 345-355.
104
Kuchnia A, Earthman C, Teigen L, et al. Evaluation of bioelectrical impedance analysis in critically ill patients: results of a multicenter prospective study [J]. JPEN J Parenter Enteral Nutr, 2017, 41(7): 1131-1138.
105
孙仁华, 江荣林, 黄曼, 等. 重症患者早期肠内营养临床实践专家共识 [J]. 中华危重病急救医学, 2018, 30(8): 715-721.
106
中国急诊危重症患者肠内营养治疗专家共识组. 中国急诊危重症患者肠内营养治疗专家共识 [J]. 中华急诊医学杂志, 2022, 31(3): 281-290.
107
Preiser JC, Arabi YM, Berger MM, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice [J]. Crit Care, 2021, 25(1): 424.
108
Reintam Blaser A, Malbrain ML, Starkopf J, et al. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on abdominal problems [J]. Intensive Care Med, 2012, 38(3): 384-394.
109
Blaser AR, Starkopf J, Kirsimägi Ü, et al. Definition, prevalence, and outcome of feeding intolerance in intensive care: a systematic review and meta-analysis [J]. Acta Anaesthesiol Scand, 2014, 58(8): 914-922.
110
Jenkins B, Calder PC, Marino LV. A systematic review of the definitions and prevalence of feeding intolerance in critically ill adults [J]. Clin Nutr ESPEN, 2022, 49: 92-102.
111
Buisman WJ, Mauritz FA, Westerhuis WE, et al. Evaluation of gastric volumes: comparison of 3-D ultrasound and magnetic resonance imaging [J]. Ultrasound Med Biol, 2016, 42(7): 1423-1430.
112
Shi J, Shen H, Gao Q, et al. Evaluation of gastric emptying in patients with gastroparesis by three-dimensional ultrasound [J]. Ann Transl Med, 2021, 9(16): 1343.
113
Li J, Wang L, Zhang H, et al. Different definitions of feeding intolerance and their associations with outcomes of critically ill adults receiving enteral nutrition: a systematic review and meta-analysis [J]. J Intensive Care, 2023, 11(1): 29.
114
Bejarano N, Navarro S, Rebasa P, et al. Intra-abdominal pressure as a prognostic factor for tolerance of enteral nutrition in critical patients [J]. JPEN J Parenter Enteral Nutr, 2013, 37(3): 352-360.
115
Brown RO, Alexander E Jr, Hanes SD, et al. Procalcitonin and enteral nutrition tolerance in critically ill patients [J]. JPEN J Parenter Enteral Nutr, 2003, 27(1): 84-88.
116
Faramarzi E, Mahmoodpoor A, Hamishehkar H, et al. Effect of gastric residual volume monitoring on incidence of ventilator-associated pneumonia in mechanically ventilated patients admitted to intensive care unit [J]. Pak J Med Sci, 2020, 36(2): 48-53.
117
Hu B, Sun R, Wu A, et al. Prognostic value of prolonged feeding intolerance in predicting all-cause mortality in critically ill patients: a multicenter, prospective, observational study [J]. JPEN J Parenter Enteral Nutr, 2020, 44(5): 855-865.
118
Padar M, Starkopf J, Starkopf L, et al. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients [J]. Clin Nutr ESPEN, 2021, 45: 322-332.
119
Lin Y, Chen M, Peng Y, et al. Feeding intolerance and risk of poor outcome in patients undergoing cardiopulmonary bypass surgery [J]. Br J Nutr, 2021, 126(9): 1340-1346.
120
Mentec H, Dupont H, Bocchetti M, et al. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications [J]. Crit Care Med, 2001, 29(10): 1955-1961.
121
Reintam Blaser A, Starkopf L, Deane AM, et al. Comparison of different definitions of feeding intolerance: a retrospective observational study [J]. Clin Nutr, 2015, 34(5): 956-961.
122
Yahyapoor F, Dehnavi Z, Askari G, et al. The prevalence and possible causes of enteral tube feeding intolerance in critically ill patients: a cross-sectional study [J]. J Res Med Sci, 2021, 26: 60.
123
呼邦传, 孙仁华, 吴爱萍, 等. ICU内喂养不耐受与重症患者临床预后的相关研究: 一项多中心、前瞻性、观察性研究 [J]. 中华急诊医学杂志, 2017, 26(4): 434-440.
124
Drakos P, Volteas P, Cleri NA, et al. Acute gastrointestinal injury and feeding intolerance as prognostic factors in critically ill COVID-19 patients [J]. J Gastrointest Surg, 2022, 26(1): 181-190.
125
Gungabissoon U, Hacquoil K, Bains C, et al. Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39(4): 441-448.
126
Heyland DK, Ortiz A, Stoppe C, et al. Incidence, risk factors, and clinical consequence of enteral feeding intolerance in the mechanically ventilated critically ill: an analysis of a multicenter, multiyear database [J]. Crit Care Med, 2021, 49(1): 49-59.
127
Hu K, Deng XL, Han L, et al. Development and validation of a predictive model for feeding intolerance in intensive care unit patients with sepsis [J]. Saudi J Gastroenterol, 2022, 28(1): 32-38.
128
Li H, Yang Z, Tian F. Risk factors associated with intolerance to enteral nutrition in moderately severe acute pancreatitis: a retrospective study of 568 patients [J]. Saudi J Gastroenterol, 2019, 25(6): 362-368.
129
Lin J, Liu Y, Ke L, et al. Feeding intolerance score in critically ill patients with enteral nutrition: A post hoc analysis of a prospective study [J]. Nutr Clin Pract, 2022, 37(4): 869-877.
130
Liu R, Paz M, Siraj L, et al. Feeding intolerance in critically ill patients with COVID-19 [J]. Clin Nutr, 2022, 41(12): 3069-3076.
131
Mao Z, Liu G, Yu Q, et al. Association between serum lactate levels and enteral feeding intolerance in septic patients treated with vasopressors: a retrospective cohort study [J]. Ann Transl Med, 2020, 8(19): 1240.
132
Merchan C, Altshuler D, Aberle C, et al. Tolerability of enteral nutrition in mechanically ventilated patients with septic shock who require vasopressors [J]. J Intensive Care Med, 2017, 32(9): 540-546.
133
Nguyen N, Ching K, Fraser R, et al. The relationship between blood glucose control and intolerance to enteral feeding during critical illness [J]. Intensive Care Med, 2007, 33(12): 2085-2092.
134
Nguyen NQ, Lam SW, Ching K, et al. Gastric feed intolerance is not increased in critically ill patients with type Ⅱ diabetes mellitus [J]. Intensive Care Med, 2007, 33(10): 1740-1745.
135
Sierp EL, Kurmis R, Lange K, et al. Nutrition and gastrointestinal dysmotility in critically ill burn patients: a retrospective observational study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(5): 1052-1060.
136
Stevens AM, Then JE, Frock KM, et al. Evaluation of feeding intolerance in patients with pentobarbital-induced coma [J]. Ann Pharmacother, 2008, 42(4): 516-522.
137
Virani FR, Peery T, Rivas O, et al. Incidence and effects of feeding intolerance in trauma patients [J]. JPEN J Parenter Enteral Nutr, 2019, 43(6): 742-749.
138
Wang K, McIlroy K, Plank LD, et al. Prevalence, outcomes, and management of enteral tube feeding intolerance: a retrospective cohort study in a tertiary center [J]. JPEN J Parenter Enteral Nutr, 2017, 41(6): 959-967.
139
Wang L, Yang H, Lv G, et al. Association of gastric antrum echodensity and acute gastrointestinal injury in critically ill patients [J]. Nutrients, 2022, 14(3): 566.
140
Reintam Blaser A, Deane AM, Preiser JC, et al. Enteral feeding intolerance: updates in definitions and pathophysiology [J]. Nutr Clin Pract, 2021, 36(1): 40-49.
141
Perlas A, Mitsakakis N, Liu L, et al. Validation of a mathematical model for ultrasound assessment of gastric volume by gastroscopic examination [J]. Anesth Analg, 2013, 116(2): 357-363.
142
Van de Putte P, Perlas A. Ultrasound assessment of gastric content and volume [J]. Br J Anaesth, 2014, 113(1): 12-22.
143
Bouvet L, Zieleskiewicz L, Loubradou E, et al. Reliability of gastric suctioning compared with ultrasound assessment of residual gastric volume: a prospective multicentre cohort study [J]. Anaesthesia, 2020, 75(3): 323-330.
144
陈闯, 徐杰丰, 刘少云, 等. 超声监测ICU危重患者胃残余量和预测肠内营养不耐受研究 [J]. 中华急诊医学杂志, 2020, 29(10): 1291-1295.
145
邹同娟, 冉启芳, 尹万红, 等. 床旁超声测量胃窦横截面积对重症患者喂养不耐受的预测价值 [J]. 四川大学学报 (医学版), 2019, 50(6): 815-820.
146
Gao T, Cheng MH, Xi FC, et al. Predictive value of transabdominal intestinal sonography in critically ill patients: a prospective observational study [J]. Crit Care, 2019, 23(1): 378.
147
Malbrain ML, Chiumello D, Pelosi P, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study [J]. Crit Care Med, 2005, 33(2): 315-322.
148
Smit M, van Meurs M, Zijlstra JG. Intra-abdominal hypertension and abdominal compartment syndrome in critically ill patients: a narrative review of past, present, and future steps [J]. Scand J Surg, 2022, 111(1): 14574969211030128.
149
Malbrain ML, Chiumello D, Cesana BM, et al; WAKE-Up! Investigators. A systematic review and individual patient data meta-analysis on intra-abdominal hypertension in critically ill patients: the wake-up project. World initiative on Abdominal Hypertension Epidemiology, a Unifying Project (WAKE-Up!) [J]. Minerva Anestesiol, 2014, 80(3): 293-306.
150
Reintam Blaser A, Preiser JC, Fruhwald S, et al. Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine [J]. Crit Care, 2020, 24(1): 224.
151
Reintam Blaser A, Parm P, Kitus R, et al. Intra-abdominal hypertension and gastrointestinal symptoms in mechanically ventilated patients [J]. Crit Care Res Pract, 2011, 2011: 982507.
152
Murcia-Sáez IM, Sobrino-Hernandez ML, García-Lopez F, et al. Usefulness of intra-abdominal pressure in a predominantly medical intensive care unit [J]. J Crit Care, 2010, 25(1): 175.e1-6.
153
Bordejé ML, Montejo JC, Mateu ML, et al; Piane Study Group Spain. Intra-abdominal pressure as a marker of enteral nutrition intolerance in critically ill patients. The PIANE study [J]. Nutrients, 2019, 11(11): 2616.
154
Du L, Zhao Y, Yin C, et al. The applied research on the intra-abdominal pressure monitoring in early enteral nutrition in patients with severe pneumonia [J]. Am J Transl Res, 2021, 13(6): 6987-6993.
155
Du L, Zhao Y, Yin C, et al. Application of intra-abdominal pressure monitoring in early enteral nutrition after abdominal surgery [J]. Am J Transl Res, 2021, 13(6): 7140-7147.
156
Frankenfield DC, Coleman A, Alam S, et al. Analysis of estimation methods for resting metabolic rate in critically ill adults [J]. JPEN J Parenter Enteral Nutr, 2009, 33(1): 27-36.
157
Zusman O, Kagan I, Bendavid I, et al. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation [J]. Clin Nutr, 2019, 38(3): 1206-1210.
158
Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review [J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 212-225.
159
Duan JY, Zheng WH, Zhou H, et al. Energy delivery guided by indirect calorimetry in critically ill patients: a systematic review and meta-analysis [J]. Crit Care, 2021, 25(1): 88.
160
Rattanachaiwong S, Singer P. Should we calculate or measure energy expenditure? practical aspects in the ICU [J]. Nutrition, 2018, 55-56: 71-75.
161
SSinger P, Singer J. Clinical guide for the use of metabolic carts: indirect calorimetry--no longer the orphan of energy estimation [J]. Nutr Clin Pract, 2016, 31(1): 30-38.
162
Smyrnios NA, Curley FJ, Shaker KG. Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients [J]. JPEN J Parenter Enteral Nutr, 1997, 21(3): 168-174.
163
McClave SA, Lowen CC, Kleber MJ, et al. Clinical use of the respiratory quotient obtained from indirect calorimetry [J]. JPEN J Parenter Enteral Nutr, 2003, 27(1): 21-26.
164
Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients [J]. Intensive Care Med, 2011, 37(4): 601-609.
165
Landes S, Mcclave SA, Frazier TH, et al.Indirect calorimetry: is it required to maximize patient outcome from nutrition therapy?[J].Current Nutrition Reports, 2016, 5(3): 1-7.
166
Allingstrup MJ, Kondrup J, Wiis J, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial [J]. Intensive Care Med, 2017, 43(11): 1637-1647.
167
Gonzalez-Granda A, Schollenberger A, Haap M, et al. Optimization of nutrition therapy with the use of calorimetry to determine and control energy needs in mechanically ventilated critically ill patients: the ONCA study, a randomized, prospective pilot study [J]. JPEN J Parenter Enteral Nutr, 2019, 43(4): 481-489.
168
石俊, 席力罡, 迟天航, 等. 静息能量监测在机械通气患者营养支持治疗中的应用价值 [J]. 中华危重病急救医学, 2019, 31(1): 98-101.
169
赵士兵, 段立彬, 余刚, 等. 应用代谢车监测ICU患者REE变化规律并指导营养支持的前瞻性研究 [J]. 中华危重病急救医学, 2019, 31(12): 1512-1516.
170
Singer P, De Waele E, Sanchez C, et al. TICACOS international: a multi-center, randomized, prospective controlled study comparing tight calorie control versus Liberal calorie administration study [J]. Clin Nutr, 2021, 40(2): 380-387.
171
Zinellu A, Mangoni AA. Serum prealbumin concentrations, COVID-19 severity, and mortality: a systematic review and meta-analysis [J]. Front Med (Lausanne), 2021, 8: 638529.
172
Akbar MR, Pranata R, Wibowo A, et al. The association between serum prealbumin and poor outcome in COVID-19-Systematic review and meta-analysis [J]. Eur Rev Med Pharmacol Sci, 2021, 25(10): 3879-3885.
173
Mears E. Outcomes of continuous process improvement of a nutritional care program incorporating serum prealbumin measurements [J]. Nutrition, 1996, 12(7-8): 479-484.
174
Beck FK, Rosenthal TC. Prealbumin: a marker for nutritional evaluation [J]. Am Fam Physician, 2002, 65(8): 1575-1578.
175
Luo Y, Qian Y. Effect of combined parenteral and enteral nutrition for patients with a critical illness: a meta-analysis of randomized controlled trials [J]. Medicine (Baltimore), 2020, 99(3): e18778.
176
Hill GL, Witney GB, Christie PM, et al. Protein status and metabolic expenditure determine the response to intravenous nutrition--a new classification of surgical malnutrition [J]. Br J Surg, 1991, 78(1): 109-113.
177
Devakonda A, George L, Raoof S, et al. Transthyretin as a marker to predict outcome in critically ill patients [J]. Clin Biochem, 2008, 41(14-15): 1126-1130.
178
Lim SH, Lee JS, Chae SH, et al. Prealbumin is not sensitive indicator of nutrition and prognosis in critical ill patients [J]. Yonsei Med J, 2005, 46(1): 21-26.
179
Haines RW, Zolfaghari P, Wan Y, et al. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma [J]. Intensive Care Med, 2019, 45(12): 1718-1731.
180
Zhang Z, Ho KM, Gu H, et al. Defining persistent critical illness based on growth trajectories in patients with sepsis [J]. Crit Care, 2020, 24(1): 57.
181
Demirjian S, Teo BW, Guzman JA, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury [J]. Nephrol Dial Transplant, 2011, 26(11): 3508-3514.
182
McDaniel J, Davuluri G, Hill EA, et al. Hyperammonemia results in reduced muscle function independent of muscle mass [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(3): G163-170.
183
Rugg C, Ströhle M, Treml B, et al. ICU-acquired hypernatremia is associated with persistent inflammation, immunosuppression and catabolism syndrome [J]. J Clin Med, 2020, 9(9): 3017.
184
Haines RW, Fowler AJ, Wan YI, et al. Catabolism in critical illness: a reanalysis of the reducing deaths due to oxidative stress (REDOXS) trial [J]. Crit Care Med, 2022, 50(7): 1072-1082.
185
Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, et al. Provision of protein and energy in relation to measured requirements in intensive care patients [J]. Clin Nutr, 2012, 31(4): 462-468.
186
Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome [J]. N Engl J Med, 2011, 364(14): 1293-1304.
187
Kritmetapak K, Peerapornratana S, Srisawat N, et al. The impact of macro-and micronutrients on predicting outcomes of critically ill patients requiring continuous renal replacement therapy [J]. PLoS One, 2016, 11(6): e0156634.
188
Duan K, Gong M, Gao X, et al. Change in urea to creatinine ratio is associated with postoperative complications and skeletal muscle wasting in pancreatic cancer patients following pancreatoduodenectomy [J]. Asia Pac J Clin Nutr, 2021, 30(3): 374-382.
189
Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients [J]. N Engl J Med, 2013, 368(16): 1489-1497.
190
Iwashyna TJ, Hodgson CL, Pilcher D, et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study [J]. Lancet Respir Med, 2016, 4(7): 566-573.
191
Volbeda M, Hessels L, Posma RA, et al. Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission [J]. J Crit Care, 2021, 63: 161-166.
192
Yucha CB, Toto KH. Calcium and phosphorus derangements [J]. Crit Care Nurs Clin North Am, 1994, 6(4): 747-766.
193
Schwartz A, Gurman G, Cohen G, et al. Association between hypophosphatemia and cardiac arrhythmias in the early stages of sepsis [J]. Eur J Intern Med, 2002, 13(7): 434.
194
Calabrese EJ, Baldwin LA. U-shaped dose-responses in biology, toxicology, and public health [J]. Annu Rev Public Health, 2001, 22: 15-33.
195
Boot R, Koekkoek K, van Zanten A. Refeeding syndrome: relevance for the critically ill patient [J]. Curr Opin Crit Care, 2018, 24(4): 235-240.
196
Cioffi I, Ponzo V, Pellegrini M, et al. The incidence of the refeeding syndrome. A systematic review and meta-analyses of literature [J]. Clin Nutr, 2021, 40(6): 3688-3701.
197
刘博, 程玉梅, 沈锋, 等. 低磷血症与重症患者不良预后有关: 一项1555例患者的Meta分析 [J]. 中华危重病急救医学, 2018, 30(1): 34-40.
198
Sin J, King L, Ballard E, et al. Hypophosphatemia and outcomes in ICU: a systematic review and meta-analysis [J]. J Intensive Care Med, 2021, 36(9): 1025-1035.
199
da Silva JSV, Seres DS, Sabino K, et al; Parenteral Nutrition Safety and Clinical Practice Committees, American Society for Parenteral and Enteral Nutrition. ASPEN consensus recommendations for refeeding syndrome [J]. Nutr Clin Pract, 2020, 35(2): 178-195.
200
Vankrunkelsven W, Gunst J, Amrein K, et al. Monitoring and parenteral administration of micronutrients, phosphate and magnesium in critically ill patients: the VITA-TRACE survey [J]. Clin Nutr, 2021, 40(2): 590-599.
201
Zheng WH, Yao Y, Zhou H, et al. Hyperphosphatemia and outcomes in critically ill patients: a systematic review and meta-analysis [J]. Front Med (Lausanne), 2022, 9: 870637.
202
Badawi O, Waite MD, Fuhrman SA, et al. Association between intensive care unit-acquired dysglycemia and in-hospital mortality [J]. Crit Care Med, 2012, 40(12): 3180-3188.
203
McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia [J]. Crit Care Clin, 2001, 17(1): 107-124.
204
Dossett LA, Cao H, Mowery NT, et al. Blood glucose variability is associated with mortality in the surgical intensive care unit [J]. Am Surg, 2008, 74(8): 679-685; discussion 685.
205
Hermanides J, Vriesendorp TM, Bosman RJ, et al. Glucose variability is associated with intensive care unit mortality [J]. Crit Care Med, 2010, 38(3): 838-842.
206
Egi M, Krinsley JS, Maurer P, et al. Pre-morbid glycemic control modifies the interaction between acute hypoglycemia and mortality [J]. Intensive Care Med, 2016, 42(4): 562-571.
207
Ichai C, Preiser JC, Société Française d'Anesthésie-Réanimation, et al. International recommendations for glucose control in adult non diabetic critically ill patients [J]. Crit Care, 2010, 14(5): R166.
208
van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients [J]. N Engl J Med, 2001, 345(19): 1359-1367.
209
Preiser JC, Devos P, Ruiz-Santana S, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study [J]. Intensive Care Med, 2009, 35(10): 1738-1748.
210
Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis [J]. N Engl J Med, 2008, 358(2): 125-139.
211
Preiser JC, van Zanten AR, Berger MM, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies [J]. Crit Care, 2015, 19(1): 35.
212
Schultz MJ, Harmsen RE, Spronk PE. Clinical review: strict or loose glycemic control in critically ill patients--implementing best available evidence from randomized controlled trials [J]. Crit Care, 2010, 14(3): 223.
213
Yao RQ, Ren C, Wu GS, et al. Is intensive glucose control bad for critically ill patients? A systematic review and meta-analysis [J]. Int J Biol Sci, 2020, 16(9): 1658-1675.
214
Sun MT, Li IC, Lin WS, et al. Pros and cons of continuous glucose monitoring in the intensive care unit [J]. World J Clin Cases, 2021, 9(29): 8666-8670.
215
Boom DT, Sechterberger MK, Rijkenberg S, et al. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial [J]. Crit Care, 2014, 18(4): 453.
216
Krinsley JS, Bruns DE, Boyd JC. The impact of measurement frequency on the domains of glycemic control in the critically ill--a Monte Carlo simulation [J]. J Diabetes Sci Technol, 2015, 9(2): 237-245.
217
Chen C, Zhao XL, Li ZH, et al. Current and emerging technology for continuous glucose monitoring [J]. Sensors (Basel), 2017, 17(1): 182.
218
Holzinger U, Warszawska J, Kitzberger R, et al. Impact of shock requiring norepinephrine on the accuracy and reliability of subcutaneous continuous glucose monitoring [J]. Intensive Care Med, 2009, 35(8): 1383-1389.
219
Kosiborod M, Gottlieb RK, Sekella JA, et al. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit [J]. BMJ Open Diabetes Res Care, 2014, 2(1): e000037.
220
Yao Y, Zhao YH, Zheng WH, et al. Subcutaneous continuous glucose monitoring in critically ill patients during insulin therapy: a meta-analysis [J]. Am J Transl Res, 2022, 14(7): 4757-4767.
221
Reignier J, Boisramé-Helms J, Brisard L, et al; NUTRIREA-2 Trial Investigators; Clinical Research in Intensive Care and Sepsis (CRICS) group. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2) [J]. Lancet, 2018, 391(10116): 133-143.
222
Wang L, Yang H, Cheng Y, et al. Mean arterial pressure/norepinephrine equivalent dose index as an early measure of initiation time for enteral nutrition in patients with shock: a prospective observational study [J]. Nutrition, 2022, 96: 111586.
223
Mao Z, Liu G, Yu Q, et al. Association between serum lactate levels and enteral feeding intolerance in septic patients treated with vasopressors: a retrospective cohort study [J]. Ann Transl Med, 2020, 8(19): 1240.
224
Mancl EE, Muzevich KM. Tolerability and safety of enteral nutrition in critically ill patients receiving intravenous vasopressor therapy [J]. JPEN J Parenter Enteral Nutr, 2013, 37(5): 641-651.
225
Ohbe H, Jo T, Matsui H, et al. Differences in effect of early enteral nutrition on mortality among ventilated adults with shock requiring low-, medium-, and high-dose noradrenaline: a propensity-matched analysis [J]. Clin Nutr, 2020, 39(2): 460-467.
226
Franzosi OS, Nunes D, Klanovicz TM, et al. Hemodynamic and skin perfusion is associated with successful enteral nutrition therapy in septic shock patients [J]. Clin Nutr, 2020, 39(12): 3721-3729.
227
Grau T, Bonet A, Rubio M, et al. Liver dysfunction associated with artificial nutrition in critically ill patients [J]. Crit Care, 2007, 11(1): R10.
228
Vanwijngaerden YM, Langouche L, Brunner R, et al. Withholding parenteral nutrition during critical illness increases plasma bilirubin but lowers the incidence of biliary sludge [J]. Hepatology, 2014, 60(1): 202-210.
229
王新颖, 牛程麟, 童黎, 等. 肠内营养对肝功能障碍患者腹部手术后肝功能及炎性反应的改善 [J]. 中华胃肠外科杂志, 2011, 14 (5): 336-339.
230
Fiaccadori E, Maggiore U, Rotelli C, et al. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study [J]. Nephrol Dial Transplant, 2005, 20(9): 1976-1980.
231
Gultekin G, Sahin H, Inanc N, et al. Impact of Omega-3 and Omega-9 fatty acids enriched total parenteral nutrition on blood chemistry and inflammatory markers in septic patients [J]. Pak J Med Sci, 2014, 30(2): 299-304.
232
Han YY, Lai SL, Ko WJ, et al. Effects of fish oil on inflammatory modulation in surgical intensive care unit patients [J]. Nutr Clin Pract, 2012, 27(1): 91-98.
233
Wang Q, Wang G, Qiu Z, et al. Elevated serum triglycerides in the prognostic assessment of acute pancreatitis: a systematic review and meta-analysis of observational studies [J]. J Clin Gastroenterol, 2017, 51(7): 586-593.
234
García-de-Lorenzo A, Denia R, Atlan P, et al. Parenteral nutrition providing a restricted amount of linoleic acid in severely burned patients: a randomised double-blind study of an olive oil-based lipid emulsion v. medium/long-chain triacylglycerols [J]. Br J Nutr, 2005, 94(2): 221-230.
235
Moranne O, Froissart M, Rossert J, et al. Timing of onset of CKD-related metabolic complications [J]. J Am Soc Nephrol, 2009, 20(1): 164-171.
236
RENAL Replacement Therapy Study Investigators; Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients [J]. N Engl J Med, 2009, 361(17): 1627-1638.
237
Finkel KW, Podoll AS. Complications of continuous renal replacement therapy [J]. Semin Dial, 2009, 22(2): 155-159.
238
Nelson EE, Hong CD, Pesce AL, et al. Anthropometric norms for the dialysis population [J]. Am J Kidney Dis, 1990, 16(1): 32-37.
239
VA/NIH Acute Renal Failure Trial Network; Palevsky PM, Zhang JH, O'Connor TZ, et al. Intensity of renal support in critically ill patients with acute kidney injury [J]. N Engl J Med, 2008, 359(1): 7-20.
240
Blake GJ, Ridker PM. High sensitivity C-reactive protein for predicting cardiovascular disease: an inflammatory hypothesis [J]. Eur Heart J, 2001, 22(5): 349-352.
241
Heimbürger O, Qureshi AR, Blaner WS, et al. Hand-grip muscle strength, lean body mass, and plasma proteins as markers of nutritional status in patients with chronic renal failure close to start of dialysis therapy [J]. Am J Kidney Dis, 2000, 36(6): 1213-1225.
242
Adeney KL, Siscovick DS, Ix JH, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD [J]. J Am Soc Nephrol, 2009, 20(2): 381-387.
243
Yang Y, Zhang P, Cui Y, et al. Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury [J]. Crit Care, 2013, 17(5): R205.
244
D'Alessandro C, Piccoli GB, Cupisti A. The "phosphorus pyramid": a visual tool for dietary phosphate management in dialysis and CKD patients [J]. BMC Nephrol, 2015, 16: 9.
245
Reaich D, Channon SM, Scrimgeour CM, et al. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation [J]. Am J Physiol, 1993, 265(2 Pt 1): E230-235.
246
Scialla JJ, Appel LJ, Astor BC, et al. Net endogenous acid production is associated with a faster decline in GFR in African Americans [J]. Kidney Int, 2012, 82(1): 106-112.
247
Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet [J]. Kidney Int, 2010, 78(11): 1128-1135.
248
Banerjee T, Crews DC, Wesson DE, et al; Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. High Dietary Acid Load Predicts ESRD among Adults with CKD [J]. J Am Soc Nephrol, 2015, 26(7): 1693-700.
249
Piton G, Capellier G. Biomarkers of gut barrier failure in the ICU [J]. Curr Opin Crit Care, 2016, 22(2): 152-160.
250
Doig CJ, Sutherland LR, Sandham JD, et al. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients [J]. Am J Respir Crit Care Med, 1998, 158(2): 444-451.
251
Reintam Blaser A, Padar M, Mändul M, et al. Development of the gastrointestinal dysfunction score (GIDS) for critically ill patients - A prospective multicenter observational study (iSOFA study) [J]. Clin Nutr, 2021, 40(8): 4932-4940.
252
Crenn P, Neveux N, Chevret S, et al. Plasma L-citrulline concentrations and its relationship with inflammation at the onset of septic shock: a pilot study [J]. J Crit Care, 2014, 29(2): 315.e1-6.
253
Grimaldi D, Guivarch E, Neveux N, et al. Markers of intestinal injury are associated with endotoxemia in successfully resuscitated patients [J]. Resuscitation, 2013, 84(1): 60-65.
254
Velasco N. Gut barrier in the critically ill patient: facts and trends [J]. Rev Med Chil, 2006, 134(8): 1033-1039.
255
Turner JR. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809.
256
Li H, Chen Y, Huo F, et al. Association between acute gastrointestinal injury and biomarkers of intestinal barrier function in critically ill patients [J]. BMC Gastroenterol, 2017, 17(1): 45.
257
Voth M, Holzberger S, Auner B, et al. I-FABP and L-FABP are early markers for abdominal injury with limited prognostic value for secondary organ failures in the post-traumatic course [J]. Clin Chem Lab Med, 2015, 53(5): 771-780.
258
Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier [J]. J Immunol, 2006, 176(5): 3070-3079.
259
Padar M, Starkopf J, Starkopf L, et al. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients [J]. Clin Nutr ESPEN, 2021, 45: 322-332.
260
Piton G, Le Gouge A, Brulé N, et al. Impact of the route of nutrition on gut mucosa in ventilated adults with shock: an ancillary of the NUTRIREA-2 trial [J]. Intensive Care Med, 2019, 45(7): 948-956.
261
Teng J, Xiang L, Long H, et al. The serum citrulline and D-lactate are associated with gastrointestinal dysfunction and failure in critically ill patients [J]. Int J Gen Med, 2021, 14: 4125-4134.
262
Dickerson RN, Tidwell AC, Minard G, et al. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support [J]. Nutrition, 2005, 21(3): 332-338.
263
Inaguma D, Koide S, Ito E, et al. Ratio of blood urea nitrogen to serum creatinine at initiation of dialysis is associated with mortality: a multicenter prospective cohort study [J]. Clin Exp Nephrol, 2018, 22(2): 353-364.
264
Berbel MN, Góes CR, Balbi AL, et al. Nutritional parameters are associated with mortality in acute kidney injury [J]. Clinics (Sao Paulo), 2014, 69(7): 476-682.
265
Canaud B, Leblanc M, Leray-Moragues H, et al. Acute renal failure: nutritional disorders and therapeutic implications [C]//Conference on Acute Renal Insufficiency. 1998.
266
Ponce D, Berbel MN, Regina de Goes C, et al. High-volume peritoneal dialysis in acute kidney injury: indications and limitations [J]. Clin J Am Soc Nephrol, 2012, 7(6): 887-894.
267
Scheinkestel CD, Kar L, Marshall K, et al. Prospective randomized trial to assess caloric and protein needs of critically ill, anuric, ventilated patients requiring continuous renal replacement therapy [J]. Nutrition, 2003, 19(11-12): 909-916.
268
Kim TJ, Park SH, Jeong HB, et al. Optimizing nitrogen balance is associated with better outcomes in neurocritically ill patients [J]. Nutrients, 2020, 12(10): 3137.
269
Wu GH, Ehm A, Bellone M, et al. Pharmacoeconomics of parenteral nutrition in surgical and critically ill patients receiving structured triglycerides in China [J]. Asia Pac J Clin Nutr, 2017, 26(6): 1021-1031.
270
Lee ZY, Yap C, Hasan MS, et al. The effect of higher versus lower protein delivery in critically ill patients: a systematic review and meta-analysis of randomized controlled trials [J]. Crit Care, 2021, 25(1): 260.
271
Dickerson RN, Maish GO 3rd, Croce MA, et al. Influence of aging on nitrogen accretion during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39(3): 282-290.
272
Casaer MP, Wilmer A, Hermans G, et al. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis [J]. Am J Respir Crit Care Med, 2013, 187(3): 247-255.
273
Weijs PJ, Looijaard WG, Beishuizen A, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients [J]. Crit Care, 2014, 18(6): 701.
274
Zappitelli M, Juarez M, Castillo L, et al. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children [J]. Intensive Care Med, 2009, 35(4): 698-706.
275
Cheatham ML, Safcsak K, Brzezinski SJ, et al. Nitrogen balance, protein loss, and the open abdomen [J]. Crit Care Med, 2007, 35(1): 127-131.
276
Konstantinides FN. Nitrogen balance studies in clinical nutrition [J]. Nutr Clin Pract, 1992, 7(5): 231-238.
277
Japur CC, Monteiro JP, Marchini JS, et al. Can an adequate energy intake be able to reverse the negative nitrogen balance in mechanically ventilated critically ill patients? [J]. J Crit Care, 2010, 25(3): 445-450.
278
Buckley CT, Prasanna N, Mays AL, et al. Protein requirements for critically ill ventilator-dependent patients with COVID-19 [J]. Nutr Clin Pract, 2021, 36(5): 984-992.
279
Dreydemy G, Coussy A, Lannou A, et al. Augmented renal clearance, muscle catabolism and urinary nitrogen loss: implications for nutritional support in critically ill trauma patients [J]. Nutrients, 2021, 13(10): 3554.
280
Dickerson RN, Tidwell AC, Minard G, et al. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support [J]. Nutrition, 2005, 21(3): 332-338.
281
Danielis M, Lorenzoni G, Azzolina D, et al. Effect of protein-fortified diet on nitrogen balance in critically ill patients: results from the OPINiB trial [J]. Nutrients, 2019, 11(5): 972.
282
Dupuis C, Bret A, Janer A, et al. Association of nitrogen balance trajectories with clinical outcomes in critically ill COVID-19 patients: a retrospective cohort study [J]. Clin Nutr, 2022, 41(12): 2895-2902.
283
Doig GS, Simpson F, Bellomo R, et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial [J]. Intensive Care Med, 2015, 41(7): 1197-1208.
284
Konstantinides FN, Konstantinides NN, Li JC, et al. Urinary urea nitrogen: too insensitive for calculating nitrogen balance studies in surgical clinical nutrition [J]. JPEN J Parenter Enteral Nutr, 1991, 15(2): 189-193.
285
Graves C, Saffle J, Morris S. Comparison of urine urea nitrogen collection times in critically ill patients [J]. Nutr Clin Pract, 2005, 20(2): 271-275.
286
陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则 (2022版) [J]. 中华医学杂志, 2022, 102(10): 697-703.
287
Chen Y, Yang K, Marušic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement [J]. Ann Intern Med, 2017, 166(2): 128-132.
288
Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews [J]. BMC Med Res Methodol, 2007, 7: 10.
289
Higgins JP, Altman DG, Gøtzsche PC, et al; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials [J]. BMJ, 2011, 343: d5928.
290
Whiting PF, Rutjes AW, Westwood ME, et al; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies [J]. Ann Intern Med, 2011, 155(8): 529-536.
291
Wells G. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses [C] //Symposium on Systematic Reviews: Beyond the Basics. 2014.
292
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations [J]. BMJ, 2008, 336(7650): 924-926.
293
Vernooij RW, Alonso-Coello P, Brouwers M, et al. Reporting items for updated clinical guidelines: checklist for the reporting of updated guidelines (CheckUp) [J]. PLoS Med, 2017, 14(1): e1002207.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 黄翠君, 张喜玲, 刘思嘉, 刘云建. 重症急性胰腺炎营养支持治疗研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 385-390.
[4] 江文诗, 何湘湘. 全球及我国器官捐献发展特征分析与学科建设[J]. 中华移植杂志(电子版), 2023, 17(05): 280-286.
[5] 杨伟光, 喇焕之, 张元桢. 营养状态及血液常规指标对肺腺癌免疫不良反应的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 829-832.
[6] 刘剑, 张燕, 刘春桂, 吉浩明, 鲁小敏. 贝伐珠单抗辅助治疗对晚期非鳞NSCLC患者炎症、免疫和营养指数的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 694-696.
[7] 黄金灿, 王迪, 崔松平, 陈晴, 吕少诚, 贺强, 郎韧. 预后营养指数对交界可切除胰腺癌患者术后预后的预测价值[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 51-56.
[8] 顾娇娇, 邹燕, 陈奕辰, 黄师菊, 张慧玲, 林楠. 基于简易营养评价精法评估肝癌患者出院后营养状况及其影响因素[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 534-539.
[9] 刘键, 张晓娜, 徐宏娟, 彭丽敏, 宋晶晶. 环硅酸锆钠对血液透析患者营养状态的影响:前瞻性巢式病例对照研究[J]. 中华肾病研究电子杂志, 2023, 12(06): 308-313.
[10] 张雯, 宋牡丹, 邓雪婷, 张云. 强化营养支持辅助奥曲肽治疗肝硬化合并食管胃底静脉曲张破裂出血的疗效及再出血危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 456-460.
[11] 顾国英, 黄迎春, 刘佳, 居建明, 于国锋, 蒋荣. 个体化肠外营养在肠切除伴肠功能障碍患者中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 489-493.
[12] 戚艳杰, 何凡, 郑毅. 国际ADHD非药物干预指南解读[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1080-1089.
[13] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(09): 962-967.
[14] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[15] 巩江华, 李凝香, 李坚, 李枫, 童莉, 邢宏利, 何新霞. 探讨原发性高血压伴失眠患者血清NPY、5-HT、BDNF水平变化及其临床意义[J]. 中华脑血管病杂志(电子版), 2023, 17(06): 582-590.
阅读次数
全文


摘要