1 |
中华医学会. 临床诊疗指南·肠外肠内营养学分册 [M]. 北京: 人民卫生出版社, 2008.
|
2 |
Kondrup J, Rasmussen HH, Hamberg O, et al; Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials [J]. Clin Nutr, 2003, 22(3): 321-336.
|
3 |
Teitelbaum D, Guenter P, Howell WH, et al. Definition of terms, style, and conventions used in A.S.P.E.N. guidelines and standards [J]. Nutr Clin Pract, 2005, 20(2): 281-285.
|
4 |
Lochs H, Allison SP, Meier R, et al. Introductory to the ESPEN Guidelines on Enteral Nutrition: terminology, definitions and general topics [J]. Clin Nutr, 2006, 25(2): 180-186.
|
5 |
Kondrup J. Nutritional-risk scoring systems in the intensive care unit [J]. Curr Opin Clin Nutr Metab Care, 2014, 17(2): 177-182.
|
6 |
Ishibashi N, Plank LD, Sando K, et al. Optimal protein requirements during the first 2 weeks after the onset of critical illness [J]. Crit Care Med, 1998, 26(9): 1529-1535.
|
7 |
中华医学会. 临床技术操作规范·肠外肠内营养学分册 [M]. 北京: 人民军医出版社, 2008.
|
8 |
Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit [J]. Clin Nutr, 2019, 38(1): 48-79.
|
9 |
McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) [J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 159-211.
|
10 |
Jie B, Jiang ZM, Nolan MT, et al. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk [J]. Nutrition, 2012, 28(10): 1022-1027.
|
11 |
Kondrup J, Allison SP, Elia M, et al. ESPEN guidelines for nutrition screening 2002 [J]. Clin Nutr, 2003, 22(4): 415-421.
|
12 |
Heyland DK, Dhaliwal R, Jiang X, et al. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool [J]. Crit Care, 2011, 15(6): R268.
|
13 |
Moretti D, Bagilet DH, Buncuga M, et al. Study of two variants of nutritional risk score “NUTRIC” in ventilated critical patients [J]. Nutr Hosp, 2014, 29(1): 166-172.
|
14 |
Mendes R, Policarpo S, Fortuna P, et al. Nutritional risk assessment and cultural validation of the modified NUTRIC score in critically ill patients-a multicenter prospective cohort study [J]. J Crit Care, 2017, 37: 249.
|
15 |
Lee ZY, Noor Airini I, Barakatun-Nisak MY. Relationship of energy and protein adequacy with 60-day mortality in mechanically ventilated critically ill patients: a prospective observational study [J]. Clin Nutr, 2018, 37(4): 1264-1270.
|
16 |
Mukhopadhyay A, Henry J, Ong V, et al. Association of modified NUTRIC score with 28-day mortality in critically ill patients [J]. Clin Nutr, 2017, 36(4): 1143-1148.
|
17 |
Kalaiselvan MS, Renuka MK, Arunkumar AS. Use of nutrition risk in critically ill (NUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study [J]. Indian J Crit Care Med, 2017, 21(5): 253-256.
|
18 |
Coltman A, Peterson S, Roehl K, et al. Use of 3 tools to assess nutrition risk in the intensive care unit [J]. JPEN J Parenter Enteral Nutr, 2015, 39(1): 28-33.
|
19 |
Özbilgin Ş, Hancı V, Ömür D, et al. Morbidity and mortality predictivity of nutritional assessment tools in the postoperative care unit [J]. Medicine (Baltimore), 2016, 95(40): e5038.
|
20 |
de Vries MC, Koekkoek WK, Opdam MH, et al. Nutritional assessment of critically ill patients: validation of the modified NUTRIC score [J]. Eur J Clin Nutr, 2018, 72(3): 428-435.
|
21 |
Compher C, Chittams J, Sammarco T, et al. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a multicenter, multinational observational study [J]. Crit Care Med, 2017, 45(2): 156-163.
|
22 |
Machado Dos Reis A, Marchetti J, Forte Dos Santos A, et al. NUTRIC score: isolated and combined use with the NRS-2002 to predict hospital mortality in critically ill patients [J]. JPEN J Parenter Enteral Nutr, 2020, 44(7): 1250-1256.
|
23 |
Viana MV, Pantet O, Bagnoud G, et al. Metabolic and nutritional characteristics of long-stay critically ill patients [J]. J Clin Med, 2019, 8(7).
|
24 |
Marchetti J, Reis AMD, Santos AFD, et al. High nutritional risk is associated with unfavorable outcomes in patients admitted to an intensive care unit [J]. Rev Bras Ter Intensiva, 2019, 31(3): 326-332.
|
25 |
Li G, Zhou CL, Ba YM, et al. Nutritional risk and therapy for severe and critical COVID-19 patients: a multicenter retrospective observational study [J]. Clin Nutr, 2021, 40(4): 2154-2161.
|
26 |
Chourdakis M, Grammatikopoulou MG, Poulia KA, et al. Translation of the modified NUTRIC score and adaptation to the Greek ICU setting [J]. Clin Nutr ESPEN, 2019, 29: 72-76.
|
27 |
Tsai MH, Huang HC, Peng YS, et al. Nutrition risk assessment using the modified NUTRIC score in cirrhotic patients with acute gastroesophageal variceal bleeding: prevalence of high nutrition risk and its independent prognostic value [J]. Nutrients, 2019, 11(9): 2152.
|
28 |
Oliveira ML, Heyland DK, Silva FM, et al. Complementarity of modified NUTRIC score with or without C-reactive protein and subjective global assessment in predicting mortality in critically ill patients [J]. Rev Bras Ter Intensiva, 2019, 31(4): 490-496.
|
29 |
Jeong DH, Hong SB, Lim CM, et al. Comparison of accuracy of NUTRIC and modified NUTRIC scores in predicting 28-day mortality in patients with sepsis: a single center retrospective study [J]. Nutrients, 2018, 10(7): 911.
|
30 |
Lew CCH, Wong GJY, Cheung KP, et al. The association between nutritional adequacy and 28-day mortality in the critically ill is not modified by their baseline nutritional status and disease severity [J]. Crit Care, 2019, 23(1): 222.
|
31 |
Mayr U, Pfau J, Lukas M, et al. NUTRIC and modified NUTRIC are accurate predictors of outcome in end-stage liver disease: a validation in critically ill patients with liver cirrhosis [J]. Nutrients, 2020, 12(7): 2134.
|
32 |
Majari K, Imani H, Hosseini S, et al. Comparison of modified NUTRIC, NRS-2002, and MUST scores in Iranian critically ill patients admitted to Intensive Care Units: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(7): 1504-1513.
|
33 |
Zhang P, Bian Y, Tang Z, et al. Use of nutrition risk in critically ill (NUTRIC) scoring system for nutrition risk assessment and prognosis prediction in critically ill neurological patients: a prospective observational study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(5): 1032-1041.
|
34 |
Brascher JMM, Peres WAF, Padilha PC. Use of the modified "Nutrition risk in the critically ill" score and its association with the death of critically ill patients [J]. Clin Nutr ESPEN, 2020, 35: 162-166.
|
35 |
Lew CCH, Cheung KP, Chong MFF, et al. Combining 2 commonly adopted nutrition instruments in the critical care setting is superior to administering either one alone [J]. JPEN J Parenter Enteral Nutr, 2017: 148607117726060.
|
36 |
Ata Ur-Rehman HM, Ishtiaq W, Yousaf M, et al. Modified nutrition risk in critically ill (mNUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study from the Pakistani Population [J]. Cureus, 2018, 10(12): e3786.
|
37 |
Kumar S, Gattani SC, Baheti AH, et al. Comparison of the performance of APACHE Ⅱ, SOFA, and mNUTRIC scoring systems in critically ill patients: a 2-year cross-sectional study [J]. Indian J Crit Care Med, 2020, 24(11): 1057-1061.
|
38 |
Lew CCH, Wong GJY, Cheung KP, et al. When timing and dose of nutrition support were examined, the modified nutrition risk in critically ill (mNUTRIC) score did not differentiate high-risk patients who would derive the most benefit from nutrition support: a prospective cohort study [J]. Ann Intensive Care, 2018, 8(1): 98.
|
39 |
da Silva Fink J, Daniel de Mello P, Daniel de Mello E. Subjective global assessment of nutritional status - a systematic review of the literature [J]. Clin Nutr, 2015, 34(5): 785-792.
|
40 |
Caporossi FS, Caporossi C, Borges Dock-Nascimento D, et al. Measurement of the thickness of the adductor pollicis muscle as a predictor of outcome in critically ill patients [J]. Nutr Hosp, 2012, 27(2): 490-495.
|
41 |
Lomivorotov VV, Efremov SM, Boboshko VA, et al. Prognostic value of nutritional screening tools for patients scheduled for cardiac surgery [J]. Interact Cardiovasc Thorac Surg, 2013, 16(5): 612-618.
|
42 |
Fontes D, Generoso Sde V, Toulson Davisson Correia MI. Subjective global assessment: a reliable nutritional assessment tool to predict outcomes in critically ill patients [J]. Clin Nutr, 2014, 33(2): 291-295.
|
43 |
Sheean PM, Peterson SJ, Gurka DP, et al. Nutrition assessment: the reproducibility of subjective global assessment in patients requiring mechanical ventilation [J]. Eur J Clin Nutr, 2010, 64(11): 1358-1364.
|
44 |
Guigoz Y. The Mini Nutritional Assessment (MNA) review of the literature--what does it tell us? [J]. J Nutr Health Aging, 2006, 10(6): 466-485; discussion 485-487.
|
45 |
Dent E, Visvanathan R, Piantadosi C, et al. Use of the Mini Nutritional Assessment to detect frailty in hospitalised older people [J]. J Nutr Health Aging, 2012, 16(9): 764-767.
|
46 |
Lew CCH, Yandell R, Fraser RJL, et al. Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review [J]. JPEN J Parenter Enteral Nutr, 2017, 41(5): 744-758.
|
47 |
Sheean PM, Peterson SJ, Chen Y, et al. Utilizing multiple methods to classify malnutrition among elderly patients admitted to the medical and surgical intensive care units (ICU) [J]. Clin Nutr, 2013, 32(5): 752-757.
|
48 |
Merli M, Giusto M, Gentili F, et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation [J]. Liver Int, 2010, 30(2): 208-214.
|
49 |
Gattermann Pereira T, da Silva Fink J, Tosatti J, et al. Subjective global assessment can be performed in critically ill surgical patients as a predictor of poor clinical outcomes [J]. Nutr Clin Pract, 2019, 34(1): 131-136.
|
50 |
Karst FP, Vieira RM, Barbiero S. Relationship between adductor pollicis muscle thickness and subjective global assessment in a cardiac intensive care unit [J]. Rev Bras Ter Intensiva, 2015, 27(4): 369-375.
|
51 |
Sheean PM, Peterson SJ, Zhao W, et al. Intensive medical nutrition therapy: methods to improve nutrition provision in the critical care setting [J]. J Acad Nutr Diet, 2012, 112(7): 1073-1079.
|
52 |
Atalay BG, Yagmur C, Nursal TZ, et al. Use of subjective global assessment and clinical outcomes in critically ill geriatric patients receiving nutrition support [J]. JPEN J Parenter Enteral Nutr, 2008, 32(4): 454-459.
|
53 |
Bector S, Vagianos K, Suh M, et al. Does the subjective global assessment predict outcome in critically ill medical patients? [J]. J Intensive Care Med, 2016, 31(7): 485-489.
|
54 |
Sungurtekin H, Sungurtekin U, Oner O, et al. Nutrition assessment in critically ill patients [J]. Nutr Clin Pract, 2008, 23(6): 635-641.
|
55 |
Verghese PP, Mathai AS, Abraham V, et al. Assessment of malnutrition and enteral feeding practices in the critically ill: a single-centre observational study [J]. Indian J Anaesth, 2018, 62(1): 29-35.
|
56 |
Spiekerman AM. Nutritional assessment (protein nutriture) [J]. Anal Chem, 1995, 67(12): 429R-436R.
|
57 |
Cui N, Tong H, Li Y, et al. Role of prealbumin in predicting the prognosis of severely and critically ill COVID-19 patients [J]. Am J Trop Med Hyg, 2021, 105(3): 718-726.
|
58 |
毕红英, 唐艳, 王迪芬. 重症患者的营养风险评估及其预后分析 [J]. 中华危重病急救医学, 2016, 28(6): 557-562.
|
59 |
Bretschera C, Boesiger F, Kaegi-Braun N, et al. Admission serum albumin concentrations and response to nutritional therapy in hospitalised patients at malnutrition risk: Secondary analysis of a randomised clinical trial [J]. EClinicalMedicine, 2022, 45: 101301.
|
60 |
Bretscher C, Buergin M, Gurzeler G, et al. Association between prealbumin, all-cause mortality, and response to nutrition treatment in patients at nutrition risk: secondary analysis of a randomized controlled trial [J]. JPEN J Parenter Enteral Nutr, 2023, 47(3): 408-419.
|
61 |
Stoppe C, Wendt S, Mehta NM, et al. Biomarkers in critical care nutrition [J]. Crit Care, 2020, 24(1): 499.
|
62 |
Davis CJ, Sowa D, Keim KS, et al. The use of prealbumin and C-reactive protein for monitoring nutrition support in adult patients receiving enteral nutrition in an urban medical center [J]. JPEN J Parenter Enteral Nutr, 2012, 36(2): 197-204.
|
63 |
Yeh DD, Johnson E, Harrison T, et al. Serum levels of albumin and prealbumin do not correlate with nutrient delivery in surgical intensive care unit patients [J]. Nutr Clin Pract, 2018, 33(3): 419-425.
|
64 |
Evans DC, Corkins MR, Malone A, et al. The use of visceral proteins as nutrition markers: an ASPEN position paper [J]. Nutr Clin Pract, 2021, 36(1): 22-28.
|
65 |
Moisey LL, Mourtzakis M, Cotton BA, et al; Nutrition and Rehabilitation Investigators Consortium (NUTRIC). Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients [J]. Crit Care, 2013, 17(5): R206.
|
66 |
Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness [J]. JAMA, 2013, 310(15): 1591-600.
|
67 |
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states [J]. J Am Soc Nephrol, 2006, 17(7): 1807-1819.
|
68 |
Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass [J]. Cell Metab, 2009, 10(6): 507-515.
|
69 |
Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness [J]. Intensive Care Med, 2020, 46(4): 637-653.
|
70 |
Puthucheary Z, Montgomery H, Moxham J, et al. Structure to function: muscle failure in critically ill patients [J]. J Physiol, 2010, 588(Pt 23): 4641-4648.
|
71 |
Schefold JC, Wollersheim T, Grunow JJ, et al. Muscular weakness and muscle wasting in the critically ill [J]. J Cachexia Sarcopenia Muscle, 2020, 11(6): 1399-1412.
|
72 |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(1): 16-31.
|
73 |
Parry SM, El-Ansary D, Cartwright MS, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function [J]. J Crit Care, 2015, 30(5): 1151.e9-14.
|
74 |
Razzera EL, Marcadenti A, Rovedder SW, et al. Parameters of bioelectrical impedance are good predictors of nutrition risk, length of stay, and mortality in critically ill patients: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2020, 44(5): 849-854.
|
75 |
Mayer KP, Thompson Bastin ML, Montgomery-Yates AA, et al. Acute skeletal muscle wasting and dysfunction predict physical disability at hospital discharge in patients with critical illness [J]. Crit Care, 2020, 24(1): 637.
|
76 |
Jiang T, Lin T, Shu X, et al. Prevalence and prognostic value of preexisting sarcopenia in patients with mechanical ventilation: a systematic review and meta-analysis [J]. Crit Care, 2022, 26(1): 140.
|
77 |
Tagawa R, Watanabe D, Ito K, et al. Dose-response relationship between protein intake and muscle mass increase: a systematic review and meta-analysis of randomized controlled trials [J]. Nutr Rev, 2020, 79(1): 66-75.
|
78 |
Hickmann CE, Castanares-Zapatero D, Deldicque L, et al. Impact of very early physical therapy during septic shock on skeletal muscle: a randomized controlled trial [J]. Crit Care Med, 2018, 46(9): 1436-1443.
|
79 |
Hwang Y, Lee YH, Cho DH, et al. Applicability of the masseter muscle as a nutritional biomarker [J]. Medicine (Baltimore), 2020, 99(6): e19069.
|
80 |
Özdemir U, Özdemir M, Aygencel G, et al. The role of maximum compressed thickness of the quadriceps femoris muscle measured by ultrasonography in assessing nutritional risk in critically-ill patients with different volume statuses [J]. Rev Assoc Med Bras (1992), 2019, 65(7): 952-958.
|
81 |
李强, 李雪霓, 冷玉鑫, 等. 多频生物电阻抗技术评估重度营养不良患者营养状态: 一项多中心前瞻性研究 [J]. 中华危重病急救医学, 2018, 30(2): 181-184.
|
82 |
Sunario J, Wibrow B, Jacques A, et al. Associations between nutrition markers and muscle mass on bioimpedance analysis in patients receiving parenteral nutrition [J]. JPEN J Parenter Enteral Nutr, 2021, 45(5): 1089-1099.
|
83 |
Pereira TG, da Silva Fink J, Silva FM. Thickness of the adductor pollicis muscle: accuracy in predicting malnutrition and length of intensive care unit stay in critically ill surgical patients: thickness of the adductor pollicis muscle in surgical critically patients [J]. Clin Nutr ESPEN, 2018, 24: 165-169.
|
84 |
Mitsiopoulos N, Baumgartner RN, Heymsfield SB, et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography [J]. J Appl Physiol (1985), 1998, 85(1): 115-122.
|
85 |
Bury C, DeChicco R, Nowak D, et al. Use of bedside ultrasound to assess muscle changes in the critically ill surgical patient [J]. JPEN J Parenter Enteral Nutr, 2021, 45(2): 394-402.
|
86 |
Lambell KJ, Tierney AC, Wang JC, et al. Comparison of ultrasound-derived muscle thickness with computed tomography muscle cross-sectional area on admission to the Intensive Care Unit: a pilot cross-sectional study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(1): 136-145.
|
87 |
Arai Y, Nakanishi N, Ono Y, et al. Ultrasound assessment of muscle mass has potential to identify patients with low muscularity at intensive care unit admission: a retrospective study [J]. Clin Nutr ESPEN, 2021, 45: 177-183.
|
88 |
Tourel C, Burnol L, Lanoiselé J, et al. Reliability of standardized ultrasound measurements of quadriceps muscle thickness in neurological critically ill patients: a comparison to computed tomography measures [J]. J Rehabil Med, 2020, 52(3): jrm00032.
|
89 |
Paris MT, Mourtzakis M, Day A, et al. Validation of bedside ultrasound of muscle layer thickness of the quadriceps in the critically ill patient (VALIDUM Study) [J]. JPEN J Parenter Enteral Nutr, 2017, 41(2): 171-180.
|
90 |
Fetterplace K, Corlette L, Abdelhamid YA, et al. Assessment of muscle mass using ultrasound with minimal versus maximal pressure compared with computed tomography in critically ill adult patients [J]. Aust Crit Care, 2021, 34(4): 303-310.
|
91 |
Baldwin CE, Bersten AD. Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated [J]. Phys Ther, 2014, 94(1): 68-82.
|
92 |
Segers J, Hermans G, Charususin N, et al. Assessment of quadriceps muscle mass with ultrasound in critically ill patients: intra- and inter-observer agreement and sensitivity [J]. Intensive Care Med, 2015, 41(3): 562-563.
|
93 |
Pita A, Ziogas IA, Ye F, et al. Feasibility of serial ultrasound measurements of the rectus femoris muscle area to assess muscle loss in patients awaiting liver transplantation in the Intensive Care Unit [J]. Transplant Direct, 2020, 6(11): e618.
|
94 |
Sabatino A, Regolisti G, di Mario F, et al. Validation by CT scan of quadriceps muscle thickness measurement by ultrasound in acute kidney injury [J]. J Nephrol, 2020, 33(1): 109-117.
|
95 |
Weinel LM, Summers MJ, Chapple LA. Ultrasonography to measure quadriceps muscle in critically ill patients: a literature review of reported methodologies [J]. Anaesth Intensive Care, 2019, 47(5): 423-434.
|
96 |
Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis--part Ⅰ: review of principles and methods [J]. Clin Nutr, 2004, 23(5): 1226-1243.
|
97 |
Mulasi U, Kuchnia AJ, Cole AJ, et al. Bioimpedance at the bedside: current applications, limitations, and opportunities [J]. Nutr Clin Pract, 2015, 30(2): 180-193.
|
98 |
Moonen H, van Zanten A. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness [J]. Curr Opin Crit Care, 2021, 27(4): 344-353.
|
99 |
Mundi MS, Patel JJ, Martindale R. Body composition technology: implications for the ICU [J]. Nutr Clin Pract, 2019, 34(1): 48-58.
|
100 |
Pardo E, El Behi H, Boizeau P, et al. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients [J]. BMC Anesthesiol, 2018, 18(1): 205.
|
101 |
Looijaard W, Stapel SN, Dekker IM, et al. Identifying critically ill patients with low muscle mass: agreement between bioelectrical impedance analysis and computed tomography [J]. Clin Nutr, 2020, 39(6): 1809-1817.
|
102 |
Kim D, Sun JS, Lee YH, et al. Comparative assessment of skeletal muscle mass using computerized tomography and bioelectrical impedance analysis in critically ill patients [J]. Clin Nutr, 2019, 38(6): 2747-2755.
|
103 |
Lambell KJ, Earthman CP, Tierney AC, et al. How does muscularity assessed by bedside methods compare to computed tomography muscle area at intensive care unit admission? A pilot prospective cross-sectional study [J]. J Hum Nutr Diet, 2021, 34(2): 345-355.
|
104 |
Kuchnia A, Earthman C, Teigen L, et al. Evaluation of bioelectrical impedance analysis in critically ill patients: results of a multicenter prospective study [J]. JPEN J Parenter Enteral Nutr, 2017, 41(7): 1131-1138.
|
105 |
孙仁华, 江荣林, 黄曼, 等. 重症患者早期肠内营养临床实践专家共识 [J]. 中华危重病急救医学, 2018, 30(8): 715-721.
|
106 |
中国急诊危重症患者肠内营养治疗专家共识组. 中国急诊危重症患者肠内营养治疗专家共识 [J]. 中华急诊医学杂志, 2022, 31(3): 281-290.
|
107 |
Preiser JC, Arabi YM, Berger MM, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice [J]. Crit Care, 2021, 25(1): 424.
|
108 |
Reintam Blaser A, Malbrain ML, Starkopf J, et al. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on abdominal problems [J]. Intensive Care Med, 2012, 38(3): 384-394.
|
109 |
Blaser AR, Starkopf J, Kirsimägi Ü, et al. Definition, prevalence, and outcome of feeding intolerance in intensive care: a systematic review and meta-analysis [J]. Acta Anaesthesiol Scand, 2014, 58(8): 914-922.
|
110 |
Jenkins B, Calder PC, Marino LV. A systematic review of the definitions and prevalence of feeding intolerance in critically ill adults [J]. Clin Nutr ESPEN, 2022, 49: 92-102.
|
111 |
Buisman WJ, Mauritz FA, Westerhuis WE, et al. Evaluation of gastric volumes: comparison of 3-D ultrasound and magnetic resonance imaging [J]. Ultrasound Med Biol, 2016, 42(7): 1423-1430.
|
112 |
Shi J, Shen H, Gao Q, et al. Evaluation of gastric emptying in patients with gastroparesis by three-dimensional ultrasound [J]. Ann Transl Med, 2021, 9(16): 1343.
|
113 |
Li J, Wang L, Zhang H, et al. Different definitions of feeding intolerance and their associations with outcomes of critically ill adults receiving enteral nutrition: a systematic review and meta-analysis [J]. J Intensive Care, 2023, 11(1): 29.
|
114 |
Bejarano N, Navarro S, Rebasa P, et al. Intra-abdominal pressure as a prognostic factor for tolerance of enteral nutrition in critical patients [J]. JPEN J Parenter Enteral Nutr, 2013, 37(3): 352-360.
|
115 |
Brown RO, Alexander E Jr, Hanes SD, et al. Procalcitonin and enteral nutrition tolerance in critically ill patients [J]. JPEN J Parenter Enteral Nutr, 2003, 27(1): 84-88.
|
116 |
Faramarzi E, Mahmoodpoor A, Hamishehkar H, et al. Effect of gastric residual volume monitoring on incidence of ventilator-associated pneumonia in mechanically ventilated patients admitted to intensive care unit [J]. Pak J Med Sci, 2020, 36(2): 48-53.
|
117 |
Hu B, Sun R, Wu A, et al. Prognostic value of prolonged feeding intolerance in predicting all-cause mortality in critically ill patients: a multicenter, prospective, observational study [J]. JPEN J Parenter Enteral Nutr, 2020, 44(5): 855-865.
|
118 |
Padar M, Starkopf J, Starkopf L, et al. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients [J]. Clin Nutr ESPEN, 2021, 45: 322-332.
|
119 |
Lin Y, Chen M, Peng Y, et al. Feeding intolerance and risk of poor outcome in patients undergoing cardiopulmonary bypass surgery [J]. Br J Nutr, 2021, 126(9): 1340-1346.
|
120 |
Mentec H, Dupont H, Bocchetti M, et al. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications [J]. Crit Care Med, 2001, 29(10): 1955-1961.
|
121 |
Reintam Blaser A, Starkopf L, Deane AM, et al. Comparison of different definitions of feeding intolerance: a retrospective observational study [J]. Clin Nutr, 2015, 34(5): 956-961.
|
122 |
Yahyapoor F, Dehnavi Z, Askari G, et al. The prevalence and possible causes of enteral tube feeding intolerance in critically ill patients: a cross-sectional study [J]. J Res Med Sci, 2021, 26: 60.
|
123 |
呼邦传, 孙仁华, 吴爱萍, 等. ICU内喂养不耐受与重症患者临床预后的相关研究: 一项多中心、前瞻性、观察性研究 [J]. 中华急诊医学杂志, 2017, 26(4): 434-440.
|
124 |
Drakos P, Volteas P, Cleri NA, et al. Acute gastrointestinal injury and feeding intolerance as prognostic factors in critically ill COVID-19 patients [J]. J Gastrointest Surg, 2022, 26(1): 181-190.
|
125 |
Gungabissoon U, Hacquoil K, Bains C, et al. Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39(4): 441-448.
|
126 |
Heyland DK, Ortiz A, Stoppe C, et al. Incidence, risk factors, and clinical consequence of enteral feeding intolerance in the mechanically ventilated critically ill: an analysis of a multicenter, multiyear database [J]. Crit Care Med, 2021, 49(1): 49-59.
|
127 |
Hu K, Deng XL, Han L, et al. Development and validation of a predictive model for feeding intolerance in intensive care unit patients with sepsis [J]. Saudi J Gastroenterol, 2022, 28(1): 32-38.
|
128 |
Li H, Yang Z, Tian F. Risk factors associated with intolerance to enteral nutrition in moderately severe acute pancreatitis: a retrospective study of 568 patients [J]. Saudi J Gastroenterol, 2019, 25(6): 362-368.
|
129 |
Lin J, Liu Y, Ke L, et al. Feeding intolerance score in critically ill patients with enteral nutrition: A post hoc analysis of a prospective study [J]. Nutr Clin Pract, 2022, 37(4): 869-877.
|
130 |
Liu R, Paz M, Siraj L, et al. Feeding intolerance in critically ill patients with COVID-19 [J]. Clin Nutr, 2022, 41(12): 3069-3076.
|
131 |
Mao Z, Liu G, Yu Q, et al. Association between serum lactate levels and enteral feeding intolerance in septic patients treated with vasopressors: a retrospective cohort study [J]. Ann Transl Med, 2020, 8(19): 1240.
|
132 |
Merchan C, Altshuler D, Aberle C, et al. Tolerability of enteral nutrition in mechanically ventilated patients with septic shock who require vasopressors [J]. J Intensive Care Med, 2017, 32(9): 540-546.
|
133 |
Nguyen N, Ching K, Fraser R, et al. The relationship between blood glucose control and intolerance to enteral feeding during critical illness [J]. Intensive Care Med, 2007, 33(12): 2085-2092.
|
134 |
Nguyen NQ, Lam SW, Ching K, et al. Gastric feed intolerance is not increased in critically ill patients with type Ⅱ diabetes mellitus [J]. Intensive Care Med, 2007, 33(10): 1740-1745.
|
135 |
Sierp EL, Kurmis R, Lange K, et al. Nutrition and gastrointestinal dysmotility in critically ill burn patients: a retrospective observational study [J]. JPEN J Parenter Enteral Nutr, 2021, 45(5): 1052-1060.
|
136 |
Stevens AM, Then JE, Frock KM, et al. Evaluation of feeding intolerance in patients with pentobarbital-induced coma [J]. Ann Pharmacother, 2008, 42(4): 516-522.
|
137 |
Virani FR, Peery T, Rivas O, et al. Incidence and effects of feeding intolerance in trauma patients [J]. JPEN J Parenter Enteral Nutr, 2019, 43(6): 742-749.
|
138 |
Wang K, McIlroy K, Plank LD, et al. Prevalence, outcomes, and management of enteral tube feeding intolerance: a retrospective cohort study in a tertiary center [J]. JPEN J Parenter Enteral Nutr, 2017, 41(6): 959-967.
|
139 |
Wang L, Yang H, Lv G, et al. Association of gastric antrum echodensity and acute gastrointestinal injury in critically ill patients [J]. Nutrients, 2022, 14(3): 566.
|
140 |
Reintam Blaser A, Deane AM, Preiser JC, et al. Enteral feeding intolerance: updates in definitions and pathophysiology [J]. Nutr Clin Pract, 2021, 36(1): 40-49.
|
141 |
Perlas A, Mitsakakis N, Liu L, et al. Validation of a mathematical model for ultrasound assessment of gastric volume by gastroscopic examination [J]. Anesth Analg, 2013, 116(2): 357-363.
|
142 |
Van de Putte P, Perlas A. Ultrasound assessment of gastric content and volume [J]. Br J Anaesth, 2014, 113(1): 12-22.
|
143 |
Bouvet L, Zieleskiewicz L, Loubradou E, et al. Reliability of gastric suctioning compared with ultrasound assessment of residual gastric volume: a prospective multicentre cohort study [J]. Anaesthesia, 2020, 75(3): 323-330.
|
144 |
陈闯, 徐杰丰, 刘少云, 等. 超声监测ICU危重患者胃残余量和预测肠内营养不耐受研究 [J]. 中华急诊医学杂志, 2020, 29(10): 1291-1295.
|
145 |
邹同娟, 冉启芳, 尹万红, 等. 床旁超声测量胃窦横截面积对重症患者喂养不耐受的预测价值 [J]. 四川大学学报 (医学版), 2019, 50(6): 815-820.
|
146 |
Gao T, Cheng MH, Xi FC, et al. Predictive value of transabdominal intestinal sonography in critically ill patients: a prospective observational study [J]. Crit Care, 2019, 23(1): 378.
|
147 |
Malbrain ML, Chiumello D, Pelosi P, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study [J]. Crit Care Med, 2005, 33(2): 315-322.
|
148 |
Smit M, van Meurs M, Zijlstra JG. Intra-abdominal hypertension and abdominal compartment syndrome in critically ill patients: a narrative review of past, present, and future steps [J]. Scand J Surg, 2022, 111(1): 14574969211030128.
|
149 |
Malbrain ML, Chiumello D, Cesana BM, et al; WAKE-Up! Investigators. A systematic review and individual patient data meta-analysis on intra-abdominal hypertension in critically ill patients: the wake-up project. World initiative on Abdominal Hypertension Epidemiology, a Unifying Project (WAKE-Up!) [J]. Minerva Anestesiol, 2014, 80(3): 293-306.
|
150 |
Reintam Blaser A, Preiser JC, Fruhwald S, et al. Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine [J]. Crit Care, 2020, 24(1): 224.
|
151 |
Reintam Blaser A, Parm P, Kitus R, et al. Intra-abdominal hypertension and gastrointestinal symptoms in mechanically ventilated patients [J]. Crit Care Res Pract, 2011, 2011: 982507.
|
152 |
Murcia-Sáez IM, Sobrino-Hernandez ML, García-Lopez F, et al. Usefulness of intra-abdominal pressure in a predominantly medical intensive care unit [J]. J Crit Care, 2010, 25(1): 175.e1-6.
|
153 |
Bordejé ML, Montejo JC, Mateu ML, et al; Piane Study Group Spain. Intra-abdominal pressure as a marker of enteral nutrition intolerance in critically ill patients. The PIANE study [J]. Nutrients, 2019, 11(11): 2616.
|
154 |
Du L, Zhao Y, Yin C, et al. The applied research on the intra-abdominal pressure monitoring in early enteral nutrition in patients with severe pneumonia [J]. Am J Transl Res, 2021, 13(6): 6987-6993.
|
155 |
Du L, Zhao Y, Yin C, et al. Application of intra-abdominal pressure monitoring in early enteral nutrition after abdominal surgery [J]. Am J Transl Res, 2021, 13(6): 7140-7147.
|
156 |
Frankenfield DC, Coleman A, Alam S, et al. Analysis of estimation methods for resting metabolic rate in critically ill adults [J]. JPEN J Parenter Enteral Nutr, 2009, 33(1): 27-36.
|
157 |
Zusman O, Kagan I, Bendavid I, et al. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation [J]. Clin Nutr, 2019, 38(3): 1206-1210.
|
158 |
Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review [J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 212-225.
|
159 |
Duan JY, Zheng WH, Zhou H, et al. Energy delivery guided by indirect calorimetry in critically ill patients: a systematic review and meta-analysis [J]. Crit Care, 2021, 25(1): 88.
|
160 |
Rattanachaiwong S, Singer P. Should we calculate or measure energy expenditure? practical aspects in the ICU [J]. Nutrition, 2018, 55-56: 71-75.
|
161 |
SSinger P, Singer J. Clinical guide for the use of metabolic carts: indirect calorimetry--no longer the orphan of energy estimation [J]. Nutr Clin Pract, 2016, 31(1): 30-38.
|
162 |
Smyrnios NA, Curley FJ, Shaker KG. Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients [J]. JPEN J Parenter Enteral Nutr, 1997, 21(3): 168-174.
|
163 |
McClave SA, Lowen CC, Kleber MJ, et al. Clinical use of the respiratory quotient obtained from indirect calorimetry [J]. JPEN J Parenter Enteral Nutr, 2003, 27(1): 21-26.
|
164 |
Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients [J]. Intensive Care Med, 2011, 37(4): 601-609.
|
165 |
Landes S, Mcclave SA, Frazier TH, et al.Indirect calorimetry: is it required to maximize patient outcome from nutrition therapy?[J].Current Nutrition Reports, 2016, 5(3): 1-7.
|
166 |
Allingstrup MJ, Kondrup J, Wiis J, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial [J]. Intensive Care Med, 2017, 43(11): 1637-1647.
|
167 |
Gonzalez-Granda A, Schollenberger A, Haap M, et al. Optimization of nutrition therapy with the use of calorimetry to determine and control energy needs in mechanically ventilated critically ill patients: the ONCA study, a randomized, prospective pilot study [J]. JPEN J Parenter Enteral Nutr, 2019, 43(4): 481-489.
|
168 |
石俊, 席力罡, 迟天航, 等. 静息能量监测在机械通气患者营养支持治疗中的应用价值 [J]. 中华危重病急救医学, 2019, 31(1): 98-101.
|
169 |
赵士兵, 段立彬, 余刚, 等. 应用代谢车监测ICU患者REE变化规律并指导营养支持的前瞻性研究 [J]. 中华危重病急救医学, 2019, 31(12): 1512-1516.
|
170 |
Singer P, De Waele E, Sanchez C, et al. TICACOS international: a multi-center, randomized, prospective controlled study comparing tight calorie control versus Liberal calorie administration study [J]. Clin Nutr, 2021, 40(2): 380-387.
|
171 |
Zinellu A, Mangoni AA. Serum prealbumin concentrations, COVID-19 severity, and mortality: a systematic review and meta-analysis [J]. Front Med (Lausanne), 2021, 8: 638529.
|
172 |
Akbar MR, Pranata R, Wibowo A, et al. The association between serum prealbumin and poor outcome in COVID-19-Systematic review and meta-analysis [J]. Eur Rev Med Pharmacol Sci, 2021, 25(10): 3879-3885.
|
173 |
Mears E. Outcomes of continuous process improvement of a nutritional care program incorporating serum prealbumin measurements [J]. Nutrition, 1996, 12(7-8): 479-484.
|
174 |
Beck FK, Rosenthal TC. Prealbumin: a marker for nutritional evaluation [J]. Am Fam Physician, 2002, 65(8): 1575-1578.
|
175 |
Luo Y, Qian Y. Effect of combined parenteral and enteral nutrition for patients with a critical illness: a meta-analysis of randomized controlled trials [J]. Medicine (Baltimore), 2020, 99(3): e18778.
|
176 |
Hill GL, Witney GB, Christie PM, et al. Protein status and metabolic expenditure determine the response to intravenous nutrition--a new classification of surgical malnutrition [J]. Br J Surg, 1991, 78(1): 109-113.
|
177 |
Devakonda A, George L, Raoof S, et al. Transthyretin as a marker to predict outcome in critically ill patients [J]. Clin Biochem, 2008, 41(14-15): 1126-1130.
|
178 |
Lim SH, Lee JS, Chae SH, et al. Prealbumin is not sensitive indicator of nutrition and prognosis in critical ill patients [J]. Yonsei Med J, 2005, 46(1): 21-26.
|
179 |
Haines RW, Zolfaghari P, Wan Y, et al. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma [J]. Intensive Care Med, 2019, 45(12): 1718-1731.
|
180 |
Zhang Z, Ho KM, Gu H, et al. Defining persistent critical illness based on growth trajectories in patients with sepsis [J]. Crit Care, 2020, 24(1): 57.
|
181 |
Demirjian S, Teo BW, Guzman JA, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury [J]. Nephrol Dial Transplant, 2011, 26(11): 3508-3514.
|
182 |
McDaniel J, Davuluri G, Hill EA, et al. Hyperammonemia results in reduced muscle function independent of muscle mass [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(3): G163-170.
|
183 |
Rugg C, Ströhle M, Treml B, et al. ICU-acquired hypernatremia is associated with persistent inflammation, immunosuppression and catabolism syndrome [J]. J Clin Med, 2020, 9(9): 3017.
|
184 |
Haines RW, Fowler AJ, Wan YI, et al. Catabolism in critical illness: a reanalysis of the reducing deaths due to oxidative stress (REDOXS) trial [J]. Crit Care Med, 2022, 50(7): 1072-1082.
|
185 |
Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, et al. Provision of protein and energy in relation to measured requirements in intensive care patients [J]. Clin Nutr, 2012, 31(4): 462-468.
|
186 |
Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome [J]. N Engl J Med, 2011, 364(14): 1293-1304.
|
187 |
Kritmetapak K, Peerapornratana S, Srisawat N, et al. The impact of macro-and micronutrients on predicting outcomes of critically ill patients requiring continuous renal replacement therapy [J]. PLoS One, 2016, 11(6): e0156634.
|
188 |
Duan K, Gong M, Gao X, et al. Change in urea to creatinine ratio is associated with postoperative complications and skeletal muscle wasting in pancreatic cancer patients following pancreatoduodenectomy [J]. Asia Pac J Clin Nutr, 2021, 30(3): 374-382.
|
189 |
Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients [J]. N Engl J Med, 2013, 368(16): 1489-1497.
|
190 |
Iwashyna TJ, Hodgson CL, Pilcher D, et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study [J]. Lancet Respir Med, 2016, 4(7): 566-573.
|
191 |
Volbeda M, Hessels L, Posma RA, et al. Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission [J]. J Crit Care, 2021, 63: 161-166.
|
192 |
Yucha CB, Toto KH. Calcium and phosphorus derangements [J]. Crit Care Nurs Clin North Am, 1994, 6(4): 747-766.
|
193 |
Schwartz A, Gurman G, Cohen G, et al. Association between hypophosphatemia and cardiac arrhythmias in the early stages of sepsis [J]. Eur J Intern Med, 2002, 13(7): 434.
|
194 |
Calabrese EJ, Baldwin LA. U-shaped dose-responses in biology, toxicology, and public health [J]. Annu Rev Public Health, 2001, 22: 15-33.
|
195 |
Boot R, Koekkoek K, van Zanten A. Refeeding syndrome: relevance for the critically ill patient [J]. Curr Opin Crit Care, 2018, 24(4): 235-240.
|
196 |
Cioffi I, Ponzo V, Pellegrini M, et al. The incidence of the refeeding syndrome. A systematic review and meta-analyses of literature [J]. Clin Nutr, 2021, 40(6): 3688-3701.
|
197 |
刘博, 程玉梅, 沈锋, 等. 低磷血症与重症患者不良预后有关: 一项1555例患者的Meta分析 [J]. 中华危重病急救医学, 2018, 30(1): 34-40.
|
198 |
Sin J, King L, Ballard E, et al. Hypophosphatemia and outcomes in ICU: a systematic review and meta-analysis [J]. J Intensive Care Med, 2021, 36(9): 1025-1035.
|
199 |
da Silva JSV, Seres DS, Sabino K, et al; Parenteral Nutrition Safety and Clinical Practice Committees, American Society for Parenteral and Enteral Nutrition. ASPEN consensus recommendations for refeeding syndrome [J]. Nutr Clin Pract, 2020, 35(2): 178-195.
|
200 |
Vankrunkelsven W, Gunst J, Amrein K, et al. Monitoring and parenteral administration of micronutrients, phosphate and magnesium in critically ill patients: the VITA-TRACE survey [J]. Clin Nutr, 2021, 40(2): 590-599.
|
201 |
Zheng WH, Yao Y, Zhou H, et al. Hyperphosphatemia and outcomes in critically ill patients: a systematic review and meta-analysis [J]. Front Med (Lausanne), 2022, 9: 870637.
|
202 |
Badawi O, Waite MD, Fuhrman SA, et al. Association between intensive care unit-acquired dysglycemia and in-hospital mortality [J]. Crit Care Med, 2012, 40(12): 3180-3188.
|
203 |
McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia [J]. Crit Care Clin, 2001, 17(1): 107-124.
|
204 |
Dossett LA, Cao H, Mowery NT, et al. Blood glucose variability is associated with mortality in the surgical intensive care unit [J]. Am Surg, 2008, 74(8): 679-685; discussion 685.
|
205 |
Hermanides J, Vriesendorp TM, Bosman RJ, et al. Glucose variability is associated with intensive care unit mortality [J]. Crit Care Med, 2010, 38(3): 838-842.
|
206 |
Egi M, Krinsley JS, Maurer P, et al. Pre-morbid glycemic control modifies the interaction between acute hypoglycemia and mortality [J]. Intensive Care Med, 2016, 42(4): 562-571.
|
207 |
Ichai C, Preiser JC, Société Française d'Anesthésie-Réanimation, et al. International recommendations for glucose control in adult non diabetic critically ill patients [J]. Crit Care, 2010, 14(5): R166.
|
208 |
van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients [J]. N Engl J Med, 2001, 345(19): 1359-1367.
|
209 |
Preiser JC, Devos P, Ruiz-Santana S, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study [J]. Intensive Care Med, 2009, 35(10): 1738-1748.
|
210 |
Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis [J]. N Engl J Med, 2008, 358(2): 125-139.
|
211 |
Preiser JC, van Zanten AR, Berger MM, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies [J]. Crit Care, 2015, 19(1): 35.
|
212 |
Schultz MJ, Harmsen RE, Spronk PE. Clinical review: strict or loose glycemic control in critically ill patients--implementing best available evidence from randomized controlled trials [J]. Crit Care, 2010, 14(3): 223.
|
213 |
Yao RQ, Ren C, Wu GS, et al. Is intensive glucose control bad for critically ill patients? A systematic review and meta-analysis [J]. Int J Biol Sci, 2020, 16(9): 1658-1675.
|
214 |
Sun MT, Li IC, Lin WS, et al. Pros and cons of continuous glucose monitoring in the intensive care unit [J]. World J Clin Cases, 2021, 9(29): 8666-8670.
|
215 |
Boom DT, Sechterberger MK, Rijkenberg S, et al. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial [J]. Crit Care, 2014, 18(4): 453.
|
216 |
Krinsley JS, Bruns DE, Boyd JC. The impact of measurement frequency on the domains of glycemic control in the critically ill--a Monte Carlo simulation [J]. J Diabetes Sci Technol, 2015, 9(2): 237-245.
|
217 |
Chen C, Zhao XL, Li ZH, et al. Current and emerging technology for continuous glucose monitoring [J]. Sensors (Basel), 2017, 17(1): 182.
|
218 |
Holzinger U, Warszawska J, Kitzberger R, et al. Impact of shock requiring norepinephrine on the accuracy and reliability of subcutaneous continuous glucose monitoring [J]. Intensive Care Med, 2009, 35(8): 1383-1389.
|
219 |
Kosiborod M, Gottlieb RK, Sekella JA, et al. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit [J]. BMJ Open Diabetes Res Care, 2014, 2(1): e000037.
|
220 |
Yao Y, Zhao YH, Zheng WH, et al. Subcutaneous continuous glucose monitoring in critically ill patients during insulin therapy: a meta-analysis [J]. Am J Transl Res, 2022, 14(7): 4757-4767.
|
221 |
Reignier J, Boisramé-Helms J, Brisard L, et al; NUTRIREA-2 Trial Investigators; Clinical Research in Intensive Care and Sepsis (CRICS) group. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2) [J]. Lancet, 2018, 391(10116): 133-143.
|
222 |
Wang L, Yang H, Cheng Y, et al. Mean arterial pressure/norepinephrine equivalent dose index as an early measure of initiation time for enteral nutrition in patients with shock: a prospective observational study [J]. Nutrition, 2022, 96: 111586.
|
223 |
Mao Z, Liu G, Yu Q, et al. Association between serum lactate levels and enteral feeding intolerance in septic patients treated with vasopressors: a retrospective cohort study [J]. Ann Transl Med, 2020, 8(19): 1240.
|
224 |
Mancl EE, Muzevich KM. Tolerability and safety of enteral nutrition in critically ill patients receiving intravenous vasopressor therapy [J]. JPEN J Parenter Enteral Nutr, 2013, 37(5): 641-651.
|
225 |
Ohbe H, Jo T, Matsui H, et al. Differences in effect of early enteral nutrition on mortality among ventilated adults with shock requiring low-, medium-, and high-dose noradrenaline: a propensity-matched analysis [J]. Clin Nutr, 2020, 39(2): 460-467.
|
226 |
Franzosi OS, Nunes D, Klanovicz TM, et al. Hemodynamic and skin perfusion is associated with successful enteral nutrition therapy in septic shock patients [J]. Clin Nutr, 2020, 39(12): 3721-3729.
|
227 |
Grau T, Bonet A, Rubio M, et al. Liver dysfunction associated with artificial nutrition in critically ill patients [J]. Crit Care, 2007, 11(1): R10.
|
228 |
Vanwijngaerden YM, Langouche L, Brunner R, et al. Withholding parenteral nutrition during critical illness increases plasma bilirubin but lowers the incidence of biliary sludge [J]. Hepatology, 2014, 60(1): 202-210.
|
229 |
王新颖, 牛程麟, 童黎, 等. 肠内营养对肝功能障碍患者腹部手术后肝功能及炎性反应的改善 [J]. 中华胃肠外科杂志, 2011, 14 (5): 336-339.
|
230 |
Fiaccadori E, Maggiore U, Rotelli C, et al. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study [J]. Nephrol Dial Transplant, 2005, 20(9): 1976-1980.
|
231 |
Gultekin G, Sahin H, Inanc N, et al. Impact of Omega-3 and Omega-9 fatty acids enriched total parenteral nutrition on blood chemistry and inflammatory markers in septic patients [J]. Pak J Med Sci, 2014, 30(2): 299-304.
|
232 |
Han YY, Lai SL, Ko WJ, et al. Effects of fish oil on inflammatory modulation in surgical intensive care unit patients [J]. Nutr Clin Pract, 2012, 27(1): 91-98.
|
233 |
Wang Q, Wang G, Qiu Z, et al. Elevated serum triglycerides in the prognostic assessment of acute pancreatitis: a systematic review and meta-analysis of observational studies [J]. J Clin Gastroenterol, 2017, 51(7): 586-593.
|
234 |
García-de-Lorenzo A, Denia R, Atlan P, et al. Parenteral nutrition providing a restricted amount of linoleic acid in severely burned patients: a randomised double-blind study of an olive oil-based lipid emulsion v. medium/long-chain triacylglycerols [J]. Br J Nutr, 2005, 94(2): 221-230.
|
235 |
Moranne O, Froissart M, Rossert J, et al. Timing of onset of CKD-related metabolic complications [J]. J Am Soc Nephrol, 2009, 20(1): 164-171.
|
236 |
RENAL Replacement Therapy Study Investigators; Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients [J]. N Engl J Med, 2009, 361(17): 1627-1638.
|
237 |
Finkel KW, Podoll AS. Complications of continuous renal replacement therapy [J]. Semin Dial, 2009, 22(2): 155-159.
|
238 |
Nelson EE, Hong CD, Pesce AL, et al. Anthropometric norms for the dialysis population [J]. Am J Kidney Dis, 1990, 16(1): 32-37.
|
239 |
VA/NIH Acute Renal Failure Trial Network; Palevsky PM, Zhang JH, O'Connor TZ, et al. Intensity of renal support in critically ill patients with acute kidney injury [J]. N Engl J Med, 2008, 359(1): 7-20.
|
240 |
Blake GJ, Ridker PM. High sensitivity C-reactive protein for predicting cardiovascular disease: an inflammatory hypothesis [J]. Eur Heart J, 2001, 22(5): 349-352.
|
241 |
Heimbürger O, Qureshi AR, Blaner WS, et al. Hand-grip muscle strength, lean body mass, and plasma proteins as markers of nutritional status in patients with chronic renal failure close to start of dialysis therapy [J]. Am J Kidney Dis, 2000, 36(6): 1213-1225.
|
242 |
Adeney KL, Siscovick DS, Ix JH, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD [J]. J Am Soc Nephrol, 2009, 20(2): 381-387.
|
243 |
Yang Y, Zhang P, Cui Y, et al. Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury [J]. Crit Care, 2013, 17(5): R205.
|
244 |
D'Alessandro C, Piccoli GB, Cupisti A. The "phosphorus pyramid": a visual tool for dietary phosphate management in dialysis and CKD patients [J]. BMC Nephrol, 2015, 16: 9.
|
245 |
Reaich D, Channon SM, Scrimgeour CM, et al. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation [J]. Am J Physiol, 1993, 265(2 Pt 1): E230-235.
|
246 |
Scialla JJ, Appel LJ, Astor BC, et al. Net endogenous acid production is associated with a faster decline in GFR in African Americans [J]. Kidney Int, 2012, 82(1): 106-112.
|
247 |
Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet [J]. Kidney Int, 2010, 78(11): 1128-1135.
|
248 |
Banerjee T, Crews DC, Wesson DE, et al; Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. High Dietary Acid Load Predicts ESRD among Adults with CKD [J]. J Am Soc Nephrol, 2015, 26(7): 1693-700.
|
249 |
Piton G, Capellier G. Biomarkers of gut barrier failure in the ICU [J]. Curr Opin Crit Care, 2016, 22(2): 152-160.
|
250 |
Doig CJ, Sutherland LR, Sandham JD, et al. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients [J]. Am J Respir Crit Care Med, 1998, 158(2): 444-451.
|
251 |
Reintam Blaser A, Padar M, Mändul M, et al. Development of the gastrointestinal dysfunction score (GIDS) for critically ill patients - A prospective multicenter observational study (iSOFA study) [J]. Clin Nutr, 2021, 40(8): 4932-4940.
|
252 |
Crenn P, Neveux N, Chevret S, et al. Plasma L-citrulline concentrations and its relationship with inflammation at the onset of septic shock: a pilot study [J]. J Crit Care, 2014, 29(2): 315.e1-6.
|
253 |
Grimaldi D, Guivarch E, Neveux N, et al. Markers of intestinal injury are associated with endotoxemia in successfully resuscitated patients [J]. Resuscitation, 2013, 84(1): 60-65.
|
254 |
Velasco N. Gut barrier in the critically ill patient: facts and trends [J]. Rev Med Chil, 2006, 134(8): 1033-1039.
|
255 |
Turner JR. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809.
|
256 |
Li H, Chen Y, Huo F, et al. Association between acute gastrointestinal injury and biomarkers of intestinal barrier function in critically ill patients [J]. BMC Gastroenterol, 2017, 17(1): 45.
|
257 |
Voth M, Holzberger S, Auner B, et al. I-FABP and L-FABP are early markers for abdominal injury with limited prognostic value for secondary organ failures in the post-traumatic course [J]. Clin Chem Lab Med, 2015, 53(5): 771-780.
|
258 |
Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier [J]. J Immunol, 2006, 176(5): 3070-3079.
|
259 |
Padar M, Starkopf J, Starkopf L, et al. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients [J]. Clin Nutr ESPEN, 2021, 45: 322-332.
|
260 |
Piton G, Le Gouge A, Brulé N, et al. Impact of the route of nutrition on gut mucosa in ventilated adults with shock: an ancillary of the NUTRIREA-2 trial [J]. Intensive Care Med, 2019, 45(7): 948-956.
|
261 |
Teng J, Xiang L, Long H, et al. The serum citrulline and D-lactate are associated with gastrointestinal dysfunction and failure in critically ill patients [J]. Int J Gen Med, 2021, 14: 4125-4134.
|
262 |
Dickerson RN, Tidwell AC, Minard G, et al. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support [J]. Nutrition, 2005, 21(3): 332-338.
|
263 |
Inaguma D, Koide S, Ito E, et al. Ratio of blood urea nitrogen to serum creatinine at initiation of dialysis is associated with mortality: a multicenter prospective cohort study [J]. Clin Exp Nephrol, 2018, 22(2): 353-364.
|
264 |
Berbel MN, Góes CR, Balbi AL, et al. Nutritional parameters are associated with mortality in acute kidney injury [J]. Clinics (Sao Paulo), 2014, 69(7): 476-682.
|
265 |
Canaud B, Leblanc M, Leray-Moragues H, et al. Acute renal failure: nutritional disorders and therapeutic implications [C]//Conference on Acute Renal Insufficiency. 1998.
|
266 |
Ponce D, Berbel MN, Regina de Goes C, et al. High-volume peritoneal dialysis in acute kidney injury: indications and limitations [J]. Clin J Am Soc Nephrol, 2012, 7(6): 887-894.
|
267 |
Scheinkestel CD, Kar L, Marshall K, et al. Prospective randomized trial to assess caloric and protein needs of critically ill, anuric, ventilated patients requiring continuous renal replacement therapy [J]. Nutrition, 2003, 19(11-12): 909-916.
|
268 |
Kim TJ, Park SH, Jeong HB, et al. Optimizing nitrogen balance is associated with better outcomes in neurocritically ill patients [J]. Nutrients, 2020, 12(10): 3137.
|
269 |
Wu GH, Ehm A, Bellone M, et al. Pharmacoeconomics of parenteral nutrition in surgical and critically ill patients receiving structured triglycerides in China [J]. Asia Pac J Clin Nutr, 2017, 26(6): 1021-1031.
|
270 |
Lee ZY, Yap C, Hasan MS, et al. The effect of higher versus lower protein delivery in critically ill patients: a systematic review and meta-analysis of randomized controlled trials [J]. Crit Care, 2021, 25(1): 260.
|
271 |
Dickerson RN, Maish GO 3rd, Croce MA, et al. Influence of aging on nitrogen accretion during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39(3): 282-290.
|
272 |
Casaer MP, Wilmer A, Hermans G, et al. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis [J]. Am J Respir Crit Care Med, 2013, 187(3): 247-255.
|
273 |
Weijs PJ, Looijaard WG, Beishuizen A, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients [J]. Crit Care, 2014, 18(6): 701.
|
274 |
Zappitelli M, Juarez M, Castillo L, et al. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children [J]. Intensive Care Med, 2009, 35(4): 698-706.
|
275 |
Cheatham ML, Safcsak K, Brzezinski SJ, et al. Nitrogen balance, protein loss, and the open abdomen [J]. Crit Care Med, 2007, 35(1): 127-131.
|
276 |
Konstantinides FN. Nitrogen balance studies in clinical nutrition [J]. Nutr Clin Pract, 1992, 7(5): 231-238.
|
277 |
Japur CC, Monteiro JP, Marchini JS, et al. Can an adequate energy intake be able to reverse the negative nitrogen balance in mechanically ventilated critically ill patients? [J]. J Crit Care, 2010, 25(3): 445-450.
|
278 |
Buckley CT, Prasanna N, Mays AL, et al. Protein requirements for critically ill ventilator-dependent patients with COVID-19 [J]. Nutr Clin Pract, 2021, 36(5): 984-992.
|
279 |
Dreydemy G, Coussy A, Lannou A, et al. Augmented renal clearance, muscle catabolism and urinary nitrogen loss: implications for nutritional support in critically ill trauma patients [J]. Nutrients, 2021, 13(10): 3554.
|
280 |
Dickerson RN, Tidwell AC, Minard G, et al. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support [J]. Nutrition, 2005, 21(3): 332-338.
|
281 |
Danielis M, Lorenzoni G, Azzolina D, et al. Effect of protein-fortified diet on nitrogen balance in critically ill patients: results from the OPINiB trial [J]. Nutrients, 2019, 11(5): 972.
|
282 |
Dupuis C, Bret A, Janer A, et al. Association of nitrogen balance trajectories with clinical outcomes in critically ill COVID-19 patients: a retrospective cohort study [J]. Clin Nutr, 2022, 41(12): 2895-2902.
|
283 |
Doig GS, Simpson F, Bellomo R, et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial [J]. Intensive Care Med, 2015, 41(7): 1197-1208.
|
284 |
Konstantinides FN, Konstantinides NN, Li JC, et al. Urinary urea nitrogen: too insensitive for calculating nitrogen balance studies in surgical clinical nutrition [J]. JPEN J Parenter Enteral Nutr, 1991, 15(2): 189-193.
|
285 |
Graves C, Saffle J, Morris S. Comparison of urine urea nitrogen collection times in critically ill patients [J]. Nutr Clin Pract, 2005, 20(2): 271-275.
|
286 |
陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则 (2022版) [J]. 中华医学杂志, 2022, 102(10): 697-703.
|
287 |
Chen Y, Yang K, Marušic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement [J]. Ann Intern Med, 2017, 166(2): 128-132.
|
288 |
Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews [J]. BMC Med Res Methodol, 2007, 7: 10.
|
289 |
Higgins JP, Altman DG, Gøtzsche PC, et al; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials [J]. BMJ, 2011, 343: d5928.
|
290 |
Whiting PF, Rutjes AW, Westwood ME, et al; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies [J]. Ann Intern Med, 2011, 155(8): 529-536.
|
291 |
Wells G. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses [C] //Symposium on Systematic Reviews: Beyond the Basics. 2014.
|
292 |
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations [J]. BMJ, 2008, 336(7650): 924-926.
|
293 |
Vernooij RW, Alonso-Coello P, Brouwers M, et al. Reporting items for updated clinical guidelines: checklist for the reporting of updated guidelines (CheckUp) [J]. PLoS Med, 2017, 14(1): e1002207.
|