切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 6 -15. doi: 10.3877/cma.j.issn.2096-1537.2024.01.002

专题笔谈

基于危重症患者病理生理特点的合理用药探讨
杜洁1, 王玲1, 龚志成1,(), 张丽娜2,()   
  1. 1. 410008 长沙,中南大学湘雅医院药学部;410008 长沙,湖南省临床药学研究中心
    2. 410008 长沙,中南大学湘雅医院重症医学科
  • 收稿日期:2022-11-22 出版日期:2024-02-28
  • 通信作者: 龚志成, 张丽娜
  • 基金资助:
    宁夏回族自治区2021年重点研究资助项目(重大项目)(2021BEG01001)

Discussion of rational drug use based on the pathophysiological characteristics of critically ill patients

Jie Du1, Ling Wang1, Zhicheng Gong1,(), Lina Zhang2,()   

  1. 1. Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China;Hunan Clinical Research Center for Clinical Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
    2. Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
  • Received:2022-11-22 Published:2024-02-28
  • Corresponding author: Zhicheng Gong, Lina Zhang
引用本文:

杜洁, 王玲, 龚志成, 张丽娜. 基于危重症患者病理生理特点的合理用药探讨[J]. 中华重症医学电子杂志, 2024, 10(01): 6-15.

Jie Du, Ling Wang, Zhicheng Gong, Lina Zhang. Discussion of rational drug use based on the pathophysiological characteristics of critically ill patients[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(01): 6-15.

重症患者病情危急且复杂多变,合并疾病较多或伴有器官功能异常,特殊治疗及侵入性操作的实施等因素均会使重症患者的药物代谢动力学发生变化,导致药物效应受到影响,不良反应发生风险相对增加。目前的说明书及相关文书的药物治疗大多是基于普通患者的研究结果及治疗推荐,因而难以保证重症患者的疗效及用药安全性。如何合理用药,保障用药安全已成为目前ICU医师和临床药师共同面临的重要课题。鉴于此,本文基于危重症患者的药物代谢特点,分析了其在特殊病理生理条件下、体外支持治疗条件下及特殊给药途径时存在的用药问题;并结合重症相关药物治疗的最新临床证据,提出临床合理用药策略。

The condition of critically ill patients is inherently intricate and precarious, often compounded by the presence of complex ailments, organ dysfunction, or specialized invasive procedures. These factors significantly alter patients' pharmacokinetics, leading reduced drug efficacy and an escalated risk of adverse reactions. Currently, drug treatment protocols outlined in manuals and related documents is primarily derive from research conducted on typical patients, posing challenges in ensuring both efficacy and safety for critically ill individuals. Addressing the rational use of drugs and ensuring their safety has emerged as a pivotal concern for clinicians and clinical pharmacists in critical care. Based on the characteristics of drug metabolism in critically ill patients, we delved into the distinctive characteristics of drug metabolism in critically ill patients. It scrutinizes challenges pertaining to drug use amidst specific pathophysiological conditions, in vitro supportive treatment settings, and specialized drug delivery routes. By amalgamating the latest clinical evidence regarding severe drug treatments, this analysis proposes pragmatic strategies for rational drug administration.

表1 危重症患者特殊病理状态下的抗生素使用建议
特殊病理状态 药物 建议
肝功能异常 哌拉西林他唑巴坦针 不予调整
头孢哌酮舒巴坦针 头孢哌酮的每日剂量不应超过2 g
头孢他啶针 无需调整
莫西沙星氯化钠注射液 轻度、中度或重度肝功能不全(Child-Pugh A、B或C类)的患者,不建议调整剂量;若有QT间期延长风险,应谨慎使用
左氧氟沙星片 无需调整
替加环素 Child Pugh A和B级:无需调整剂量;Child Pugh C级:首剂100 mg,然后25 mg q12 h
美罗培南针 无需调整
亚胺培南西司他丁针 无需调整
利奈唑胺注射液 Child-Pugh A或B级:无需调整;Child-Pugh C级:谨慎使用并监测血小板减少症
卡泊芬净针 Child-Pugh A级:无需调整;Child-Pugh B级:第一天70 mg负荷量,其后35 mg q24 h;Child-Pugh C级:第1天70 mg负荷量,其后35 mg q24 h,但需慎用
伏立康唑胶囊 Child-Pugh A级或B级成人患者:负荷剂量不变,维持剂量减半;Child-Pugh C级:慎用,利大于弊时可使用
伏立康唑片 Child-Pugh A级和B级成人患者:负荷剂量不变,维持剂量减半;Child-Pugh C级:慎用,利大于弊时可使用
氟康唑片 慎用
肾功能异常 哌拉西林他唑巴坦针 GFR>40 ml/min:常规剂量;GFR 20~40 ml/min:2.25 g q6 h;GFR<20 ml/min:2.25 g q8 h;血液透析:2.25 g q12 h,透析后额外给1剂
头孢他啶针 GFR 50~90 ml/min:2 g q8~12 h;GFR 10~50 ml/min:2 g q12~24 h;GFR<10 ml/min:2 g q24~48 h;血液透析:2 g q24~48 h(+透析后额外1 g);CRRT:1~2 g q12~24 h(取决于透析流率)
莫西沙星氯化钠注射液 无需调整
左氧氟沙星片 GFR 50~90 ml/min:750 mg qd;GFR 20~49 ml/min:750 mg q48 h;GFR<20 ml/min:750 mg×1,然后 500 mg q48 h;
血液透析:同GFR<20 ml/min;腹膜透析:同GFR<20 ml/min;CRRT:同GFR<20 ml/min
替加环素 GFR 50~90 ml/min:250~500 mg q8~12 h;GFR 10~50 ml/min:250~500 mg q12~24 h;GFR<10 ml/min:250~500 mg qd;血液透析:同GFR<10 ml/min;腹膜透析:同GFR<10 ml/min;CRRT:250~500 mg q12~24 h
美罗培南针 25 ml/min<GFR≤50 ml/min:1 g q12 h;10 ml/min<GFR≤25 ml/min:0.5 g q12 h;GFR≤10 ml/min:0.5 g qd
亚胺培南西司他丁针 体重≥70 kg成年患者:
(1)每日总剂量1 g:41 ml/min<GFR<70 ml/min,0.25 g q8 h;21 ml/min<GFR<40 ml/min,0.25 g q12 h;6 ml/min<GFR<20 ml/min,0.25g q12 h。
(2)每日总剂量1.5 g:41 ml/min<GFR<70 ml/min,0.25 g q6 h;21 ml/min<GFR<40 ml/min,0.25 g q8 h;6 ml/min<GFR<20 ml/min,0.25 g q12 h。
(3)每日总剂量2 g:41 ml/min<GFR<70 ml/min,0.5 g q8 h;21 ml/min<GFR<40 ml/min,0.25 g q6 h;6 ml/min<GFR<20 ml/min,0.25 g q12 h。
(4)每日总剂量3 g:41 ml/min<GFR<70 ml/min,0.5 g q6 h;21 ml/min<GFR<40 ml/min,0.5 g q8 h;6 ml/min<GFR<20 ml/min,0.5 g q12 h。
(5)每日总剂量4 g:41 ml/min<GFR<70 ml/min,0.75 g q8 h;21 ml/min<GFR<40 ml/min,0.5 g q6 h;6 ml/min<GFR<20 ml/min,0.5 g q12。体重<70 kg成年患者,需按比例降低给药剂量
万古霉素针 GFR 50~90 ml/min:常规剂量;
GFR 10~50 ml/min:15 mg/kg q24~96 h;
GFR<10 ml/min:7.5 mg/kg q2~3 d;
血液透析:为达到谷浓度15~20 mg/L,如下次透析在1 d内,予15 mg/kg,如在2 d内,予25 mg/kg,如在3 d内,予35 mg/kg;
腹膜透析:同GFR<10 ml/min;
CRRT:CAVH/CVVH,500 mg q24~48 h
利奈唑胺注射液 无需调整
氟康唑氯化钠注射液 GFR 10~50 ml/min:常规剂量的50%;
GFR<10 ml/min:常规剂量的50%;
血液透析:100~400 mg,qd(透析日透后给药);
腹膜透析:常规剂量的50%,qd
CRRT:200~400 mg,qd
卡泊芬净针 无需调整
伏立康唑胶囊 无需调整
伏立康唑片 无需调整
氟康唑片 GFR 10~50 ml/min:常规剂量的50%;
GFR<10 ml/min:常规剂量的50%;
血液透析:100~400 mg,qd(透析日透后给药);
腹膜透析:常规剂量的50%,qd
CRRT:200~400 mg,qd
低蛋白血症 青霉素、阿莫西林克拉维酸、哌拉西林他唑巴坦 缩短给药间隔或延长给药时间使fT>MIC(50%~60%)或增加维持剂量
头孢类 缩短给药间隔或延长给药时间使fT>MIC(60%~70%)或增加维持剂量
碳青霉烯类 缩短给药间隔或延长给药时间使fT>MIC(40%)或增加维持剂量
喹诺酮类 每次给药剂量或日总剂量不变时,减少给药次数增加负荷剂量
头孢曲松 负荷剂量:2 g;
维持剂量:增加使用频次(如1 g q12 h)
氟氯西林 负荷剂量:2 g;
维持剂量:持续输注(8~12 g qd
达托霉素 负荷剂量:6~8 mg/kg;
维持剂量:6 mg/kg qd
烧伤患者:10~12 mg/kg qd
万古霉素 负荷剂量:20~30 mg/kg;
维持剂量:增加剂量(如1.5 g q12h)或持续滴注,同时监测Cmin在15~25 mg/L
替考拉宁 负荷剂量:6 mg/kg q12 h×3次;
维持剂量:6~12 mg/kg qd,同时监测Cmin在15~30 mg/L
厄他培南 负荷剂量:2 g;
维持剂量:增加使用频次(如1 g q12 h)
氨曲南 负荷剂量:2 g q8 h×3次;
维持剂量:增加频次(如1g q6 h)
图1 危重症患者药物优化策略 注:ECMO为体外膜肺氧合;TPE为治疗性血浆置换术;RRT为肾脏替代治疗;CRRT为连续性肾脏替代治疗;CTP为Child-Turcotte-Pugh;TDM为治疗药物监测;GFR为肾小球滤过率;Cmax为血药峰浓度;MIC为最小抑菌浓度;AUC为药时曲线下面积;T%>MIC为药物浓度高于MIC的时间
1
Barrasa H, Soraluce A, Isla A, et al. Pharmacokinetics of linezolid in critically ill patients on continuous renal replacement therapy: Influence of residual renal function on PK/PD target attainment [J]. J Crit Care, 2019, 50: 69-76.
2
Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis [J]. Intensive Care Med, 2016, 42(10): 1535-1545.
3
Boisson M, Mimoz O, Hadzic M, et al. Pharmacokinetics of intravenous and nebulized gentamicin in critically ill patients [J]. J Antimicrob Chemother, 2018, 73(10): 2830-2837.
4
Dayal S, Aluri J, Hall N, et al. Effect of hepatic impairment on pharmacokinetics, safety, and tolerability of Lemborexant [J]. Pharmacol Res Perspect, 2021, 9(2): e00758.
5
US Food and Drug Administration. Guidance for industry. Pharmacokinetics in patients with impaired hepatic function: Study design, data analysis, and impact on dosing and labeling [EB/OL]. [2021-09-20].
6
China Center for Drug Evaluation. 肝功能损害患者的药代动力学研究技术指导原则--研究设计、数据分析、给药剂量调整和说明书撰写 [EB/OL]. (2019-10-31) [2021-09-20].
7
Preston RA, Marbury T, Balaratnam G, et al. Pharmacokinetics of Voxelotor in patients with renal and hepatic impairment [J]. J Clin Pharmacol, 2021, 61(4): 493-505.
8
Krens SD, Lassche G, Jansman FGA, et al. Dose recommendations for anticancer drugs in patients with renal or hepatic impairment [J]. Lancet Oncol, 2019, 20(4): e200-e207.
9
曹运莉, 杜小莉, 朱珠. 肝功能不全时药物剂量调整方法探讨[J]. 中国药师, 2012, 15(4): 549-552.
10
Gorham J, Taccone FS, Hites M. Ensuring target concentrations of antibiotics in critically ill patients through dose adjustment [J]. Expert Opin Drug Metab Toxicol, 2022, 18(3): 177-187.
11
Cook AM, Hatton-Kolpek J. Augmented renal clearance [J]. Pharmacotherapy, 2019, 39(3): 346-354.
12
Mahmoud SH, Shen C. Augmented renal clearance in critical illness: an important consideration in drug dosing [J]. Pharmaceutics, 2017, 9(3): 36.
13
Luo Y, Wang Y, Ma Y, et al. Augmented renal clearance: what have we known and what will we do? [J]. Front Pharmacol, 2021, 12: 723731.
14
Chu Y, Luo Y, Ji S, et al. Population pharmacokinetics of vancomycin in Chinese patients with augmented renal clearance [J]. J Infect Public Health, 2020, 13(1): 68-74.
15
Chen Y, Liu L, Zhu M. Effect of augmented renal clearance on the therapeutic drug monitoring of vancomycin in patients after neurosurgery [J]. J Int Med Res, 2020, 48(10): 300060520949076.
16
Chen IH, Nicolau DP. Augmented renal clearance and how to augment antibiotic dosing [J]. Antibiotics (Basel), 2020, 9(7): 393.
17
黄健, 武阿龙, 徐丙发. 合并低蛋白血症重症患者的抗菌药物给药方案调整研究进展 [J]. 中国新药杂志, 2022, 31(5): 442-447.
18
Wiedermann CJ. Hypoalbuminemia as surrogate and culprit of infections [J]. Int J Mol Sci, 2021, 22(9): 4496.
19
Bastida C, Hernández-Tejero M, Cariqueo M, et al. Tigecycline population pharmacokinetics in critically ill patients with decompensated cirrhosis and severe infections [J]. J Antimicrob Chemother, 2022, 77(5): 1365-1371.
20
Bartoletti M, Giannella M, Lewis RE, et al. Bloodstream infections in patients with liver cirrhosis [J]. Virulence, 2016, 7(3): 309-319.
21
Dhanani JA, Ahern B, Lupinsky L, et al. Comparative plasma pharmacokinetics of Ceftriaxone and Ertapenem in normoalbuminemia, hypoalbuminemia, and albumin replacement in a sheep model [J]. Antimicrob Agents Chemother, 2020, 64(7): e02584-19.
22
Pérez-Blanco JS, Sáez Fernández EM, Calvo MV et al. Amikacin initial dosage in patients with hypoalbuminaemia: an interactive tool based on a population pharmacokinetic approach [J]. J Antimicrob Chemother, 2020, 75(8): 2222-2231.
23
Shekar K, Roberts JA, Welch S, et al. ASAP ECMO: antibiotic, sedative and analgesic pharmacokinetics during extracorporeal membrane oxygenation: a multi-centre study to optimise drug therapy during ECMO [J]. BMC Anesthesiol, 2012, 12: 29.
24
Shekar K, Roberts JA, Mcdonald CI, et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation [J]. Crit Care, 2012, 16(5): R194.
25
Shekar K, Roberts JA, Mullany DV, et al. Increased sedation requirements in patients receiving extracorporeal membrane oxygenation for respiratory and cardiorespiratory failure [J]. Anaesth Intensive Care, 2012, 40(4): 648-655.
26
Ha MA, Sieg AC. Evaluation of altered drug pharmacokinetics in critically ill adults receiving extracorporeal membrane oxygenation [J]. Pharmacotherapy, 2017, 37(2): 221-235.
27
Cheng V, Abdul-Aziz MH, Roberts JA, et al. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation [J]. J Thorac Dis, 2018, 10(Suppl 5): S629-S641.
28
Abdul-Aziz MH, Roberts JA. Antibiotic dosing during extracorporeal membrane oxygenation: does the system matter? [J]. Curr Opin Anaesthesiol, 2020, 33(1): 71-82.
29
Shekar K, Roberts JA, Ghassabian S, et al. Sedation during extracorporeal membrane oxygenation-why more is less [J]. Anaesth Intensive Care, 2012, 40(6): 1067-1069.
30
Kühn D, Metz C, Seiler F, et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study [J]. Crit Care, 2020, 24(1): 664.
31
Wang Y, Chen W, Huang Y, et al. Optimized dosing regimens of Meropenem in septic children receiving extracorporeal life support [J]. Front Pharmacol, 2021, 12: 699191.
32
Fernández-Zarzoso M, Gómez-Seguí I, de la Rubia J. Therapeutic plasma exchange: review of current indications [J]. Transfus Apher Sci, 2019, 58(3): 247-253.
33
Mahmoud SH, Buhler J, Chu E, et al. Drug dosing in patients undergoing therapeutic plasma exchange [J]. Neurocrit Care, 2021, 34(1): 301-311.
34
Krzych ŁJ, Czok M, Putowski Z. Is antimicrobial treatment effective during therapeutic plasma exchange? Investigating the role of possible interactions [J]. Pharmaceutics, 2020, 12(5): 395.
35
Jiang SP, Zhu ZY, Wu XL, et al. Effectiveness of pharmacist dosing adjustment for critically ill patients receiving continuous renal replacement therapy: a comparative study [J]. Ther Clin Risk Manag, 2014, 10: 405-412.
36
Wanden-Berghe C, Patino-Alonso MC, Galindo-Villardón P, et al. Complications associated with enteral nutrition: CAFANE study [J]. Nutrients, 2019, 11(9): 2041.
37
Williams NT. Medication administration through enteral feeding tubes [J]. Am J Health Syst Pharm, 2008, 65(24): 2347-2357.
38
中华医学会呼吸病学分会感染学组. 成人抗感染药物下呼吸道局部应用专家共识 [J].中华结核和呼吸杂志, 2021, 44(4): 322-339.
39
杜光, 赵杰, 卜书红, 等. 雾化吸入疗法合理用药专家共识(2019年版) [J]. 医药导报, 2019, 38(2): 135-146.
40
施毅. 中国成人医院获得性肺炎与呼吸机相关性肺炎诊断和治疗指南(2018年版) [J]. 中华结核和呼吸杂志, 2018, 41(4): 255-280.
41
Nau R, Blei C, Eiffert H. Intrathecal antibacterial and antifungal therapies [J]. Clin Microbiol Rev, 2020, 33(3): e00190-19.
42
中国医师协会神经外科医师分会神经重症专家委员会, 北京医学会神经外科学分会神经外科危重症学组. 神经外科中枢神经系统感染诊治中国专家共识(2021版) [J]. 中华神经外科杂志, 2021, 37(1): 2-15.
43
Tunkel AR, Hasbun R, Bhimraj A, et al. 2017 Infectious Diseases Society of America's Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis [J]. Clin Infect Dis, 2017, 64(6): e34-e65.
44
No authors listed. The management of neurosurgical patients with postoperative bacterial or aseptic meningitis or external ventricular drain-associated ventriculitis. Infection in Neurosurgery Working Party of the British Society for Antimicrobial Chemotherapy [J]. Br J Neurosurg, 2000, 14(1): 7-12.
45
MacVane SH, Kuti JL, Nicolau DP. Prolonging β-lactam infusion: a review of the rationale and evidence, and guidance for implementation [J]. Int J Antimicrob Agents, 2014, 43(2): 105-113.
46
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 [J]. Intensive Care Med, 2021, 47(11): 1181-1247.
[1] 郭玛娜, 李涛, 李娜. 4 086例危重症患者流行病学特点分析[J]. 中华卫生应急电子杂志, 2017, 03(03): 157-159.
阅读次数
全文


摘要