1 |
Antonogiannaki EM, Georgopoulos D, Akoumianaki E.Patientventilator dyssynchrony [J].Korean J Crit Care Med, 2017, 32(4):307-322.
|
2 |
Holanda MA, Vasconcelos RDS, Ferreira JC, et al.Patient-ventilator asynchrony [J].J Bras Pneumol, 2018, 44(4): 321-333.
|
3 |
Kacmarek RM, Stoller JK, Heuer AJ.Fundamentals of respiratory care[M].11th edition.Canada: Elsevier, 2017.
|
4 |
Gholami B, Haddad WM, Bailey JM.AI in the ICU: in the intensive care unit, artificial intelligence can keep watch [J].IEEE Spectrum,2018, 55(10): 31-35.
|
5 |
Blanch L, Villagra A, Sales B, et al.Asynchronies during mechanical ventilation are associated with mortality [J].Intensive Care Med, 2015,41(4): 633-641.
|
6 |
Thille AW, Rodriguez P, Cabello B, et al.Patient-ventilator asynchrony during assisted mechanical ventilation [J].Intensive Care Med, 2006,32(10): 1515-1522.
|
7 |
Alexopoulou C, Kondili E, Plataki M, et al.Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation [J].Intensive Care Med, 2013, 39(6): 1040-1047.
|
8 |
Colombo D, Cammarota G, Alemani M, et al.Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony [J].Crit Care Med, 2011, 39(11): 2452-2457.
|
9 |
Goligher EC, Dres M, Patel BK, et al.Lung- and diaphragm-protective ventilation [J].Am J Respir Crit Care Med, 2020, 202(7): 950-961.
|
10 |
Ramirez II, Arellano DH, Adasme RS, et al.Ability of ICU health-care professionals to identify patient-ventilator asynchrony using waveform analysis [J].Respir Care, 2017, 62(2): 144-149.
|
11 |
李宏亮, 周建新.反转触发:易被忽视的人机不同步 [J/OL].中华重症医学电子杂志, 2023, 9(1): 19-24.
|
12 |
Blanch L, Sales B, Montanya J, et al.Validation of the Better Care ®system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study [J].Intensive Care Med, 2012, 38(5):772-780.
|
13 |
Mulqueeny Q, Ceriana P, Carlucci A, et al.Automatic detection of ineffective triggering and double triggering during mechanical ventilation [J].Intensive Care Med, 2007, 33(11): 2014-2018.
|
14 |
Chen CW, Lin WC, Hsu CH, et al.Detecting ineffective triggering in the expiratory phase in mechanically ventilated patients based on airway flow and pressure deflection: feasibility of using a computer algorithm [J].Crit Care Med, 2008, 36(2): 455-461.
|
15 |
Gutierrez G, Ballarino GJ, Turkan H, et al.Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow [J].Crit Care, 2011, 15(4): R167.
|
16 |
Sinderby C, Liu S, Colombo D, et al.An automated and standardized neural index to quantify patient-ventilator interaction [J].Crit Care,2013, 17(5): R239.
|
17 |
Telias I, Madorno M, Pham T, et al.Magnitude of synchronous and dyssynchronous inspiratory efforts during mechanical ventilation: a novel method [J].Am J Respir Crit Care Med, 2023, 207(9): 1239-1243.
|
18 |
Gholami B, Phan TS, Haddad WM, et al.Replicating human expertise of mechanical ventilation waveform analysis in detecting patientventilator cycling asynchrony using machine learning [J].Comput Biol Med, 2018, 97: 137-144.
|
19 |
Sottile PD, Albers D, Higgins C, et al.The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm [J].Crit Care Med, 2018, 46(2): e151-e157.
|
20 |
Casagrande A, Quintavalle F, Fernandez R, et al.An effective pressureflow characterization of respiratory asynchronies in mechanical ventilation [J].J Clin Monit Comput, 2021, 35(2): 289-296.
|
21 |
Rehm GB, Han J, Kuhn BT, et al.Creation of a robust and generalizable machine learning classifier for patient ventilator asynchrony [J].Methods Inf Med, 2018, 57(4): 208-219.
|
22 |
Loo NL, Chiew YS, Tan CP, et al.A machine learning model for realtime asynchronous breathing monitoring [J].IFAC Pap OnLine, 2018,51(27): 378-383.
|
23 |
Baedorf-Kassis EN, Glowala J, Poka KB, et al.Reverse triggering neural network and rules-based automated detection in acute respiratory distress syndrome [J].J Crit Care, 2023, 75: 154256.
|
24 |
Zhang L, Mao K, Duan K, et al.Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network [J].Comput Biol Med, 2020,120: 103721.
|
25 |
Pan Q, Zhang L, Jia M, et al.An interpretable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation [J].Comput Methods Programs Biomed, 2021, 204:106057.
|
26 |
Chen D, Lin K, Deng Z, et al.Attention-based convolutional long short-term memory neural network for detection of patient-ventilator asynchrony from mechanical ventilation [J].Biomed Signal Process Control, 2022, 78: 103923.
|
27 |
Pan Q, Jia M, Liu Q, et al.Identifying patient-ventilator asynchrony on a small dataset using image-based transfer learning [J].Sensors, 2021,21(12): 4149.
|
28 |
周益民, 宁泽惺, 罗旭颖, 等.基于半监督卷积神经网络进行人机不同步的识别 [J].首都医科大学学报, 2022, 43(5): 734-739.
|
29 |
van Diepen A, Bakkes T, De Bie A, et al.A model-based approach to generating annotated pressure support waveforms [J].J Clin Monit Comput, 2022, 36: 1739-1752.
|
30 |
Zhou C, Chase JG, Sun Q, et al.Reconstructing asynchrony for mechanical ventilation using a hysteresis loop virtual patient model [J].Biomed Eng Online, 2022, 21(1): 16.
|
31 |
Pham T, Montanya J, Telias I, et al.Automated detection and quantification of reverse triggering effort under mechanical ventilation[J].Crit Care, 2021, 25(1): 60.
|
32 |
Bakkes T, Van Diepen A, De Bie A, et al.Automated detection and classification of patient-ventilator asynchrony by means of machine learning and simulated data [J].Comput Methods Programs Biomed,2023, 230: 107333.
|
33 |
Alber M, Buganza Tepole A, Cannon WR, et al.Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences [J].NPJ Digit Med, 2019, 2: 115.
|
34 |
Blanch L, Sales B, Montanya J, et al.Validation of the Better Care®system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study [J].Intensive Care Med, 2012, 38(5):772-780.
|
35 |
Ng QA, Chiew YS, Wang X, et al.Network data acquisition and monitoring system for intensive care mechanical ventilation treatment[J].IEEE Access, 2021, 9: 91859-91873.
|
36 |
Adams JY, Lieng MK, Kuhn BT, et al.Development and validation of a multi-algorithm analytic platform to detect off-target mechanical ventilation [J].Sci Rep, 2017, 7(1): 14980.
|
37 |
Su L, Lan Y, Chi Y, et al.Establishment and application of a patientventilator asynchrony remote network platform for ICU mechanical ventilation: a retrospective study [J].J Clin Med, 2023, 12(4): 1570.
|
38 |
Le-Khac PH, Healy G, Smeaton AF.Contrastive representation learning: a framework and review [J].IEEE Access, 2020, 8: 193907-193934.
|
39 |
Zhuang F, Qi Z, Duan K, et al.A comprehensive survey on transfer learning [J].Proc IEEE Inst Electr Electron Eng, 2021, 109(1): 43-76.
|
40 |
Wang S, Li C, Wang R, et al.Annotation-efficient deep learning for automatic medical image segmentation [J].Nat Commun, 2021, 12(1):5915.
|
41 |
Lai J, Tan H, Wang J, et al.Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset [J].Nat Commun, 2023, 14(1): 3741.
|