切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (04) : 399 -403. doi: 10.3877/cma.j.issn.2096-1537.2024.04.015

综述

基于机械通气波形大数据的人机不同步自动监测方法
潘清1,(), 葛慧青2   
  1. 1.310023 杭州,浙江工业大学信息工程学院
    2.310016杭州,浙江大学医学院附属邵逸夫医院呼吸治疗科 国家呼吸区域医疗中心
  • 收稿日期:2023-10-16 出版日期:2024-11-28
  • 通信作者: 潘清
  • 基金资助:
    国家自然科学基金资助项目(32371372,82070087)

Review on automatic detection methods of patient-ventilatory asynchrony based on big data of mechanical ventilation waveform

Qing Pan1,(), Huiqing Ge2   

  1. 1.College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    2.Department of Respiratory Care, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
  • Received:2023-10-16 Published:2024-11-28
  • Corresponding author: Qing Pan
引用本文:

潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.

Qing Pan, Huiqing Ge. Review on automatic detection methods of patient-ventilatory asynchrony based on big data of mechanical ventilation waveform[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(04): 399-403.

人机不同步(PVA)在机械通气中较为常见,与呼吸做功增加、机械通气时间延长、呼吸机诱发肺损伤以及不良的预后密切相关。识别PVA 需要仔细观察患者及其呼吸机波形,但临床医护人员识别PVA 的能力参差不齐,且难以在床旁持续监测,亟需自动化的监测手段。随着机械通气波形大数据的日趋成熟,PVA 自动检测算法在近年快速发展,呈现出数据驱动与知识驱动协同发展的趋势。本文综述PVA 自动检测方法的发展历程,概述基于规则、传统机器学习、深度学习、生理系统模型的技术的优缺点,介绍PVA 实时检测与分析系统的发展和临床应用现状,并探讨基于机械通气波形大数据检测PVA 的研究面临的缺乏标准数据集、算法泛化能力不足等挑战。

Patient-ventilatory asynchrony (PVA) is common during mechanical ventilation, and is closely associated with elevated work of breath, prolonged mechanical ventilation, ventilator-induced lung injury,as well as worse clinical outcomes.Identifying PVA requires careful observation of the patient and their ventilator waveforms, but clinical healthcare providers vary in their ability to recognize PVA, and continuous bedside monitoring is challenging, urging the development of automated monitoring methods.PVA automatic detection algorithms have rapidly developed in recent years, showing a trend of synergistic development driven by data and knowledge.This article reviews the development history of PVA automatic detection methods, outlines the advantages and disadvantages of technologies based on rules, traditional machine learning, deep learning, and physiological system models, introduces the development and clinical application status of real-time PVA detection and analysis systems, and discusses the challenges faced in PVA detection based on mechanical ventilation waveform big data, such as the lack of standard datasets and insufficient algorithm generalization capability.

表1 各类PVA 检测方法比较
1
Antonogiannaki EM, Georgopoulos D, Akoumianaki E.Patientventilator dyssynchrony [J].Korean J Crit Care Med, 2017, 32(4):307-322.
2
Holanda MA, Vasconcelos RDS, Ferreira JC, et al.Patient-ventilator asynchrony [J].J Bras Pneumol, 2018, 44(4): 321-333.
3
Kacmarek RM, Stoller JK, Heuer AJ.Fundamentals of respiratory care[M].11th edition.Canada: Elsevier, 2017.
4
Gholami B, Haddad WM, Bailey JM.AI in the ICU: in the intensive care unit, artificial intelligence can keep watch [J].IEEE Spectrum,2018, 55(10): 31-35.
5
Blanch L, Villagra A, Sales B, et al.Asynchronies during mechanical ventilation are associated with mortality [J].Intensive Care Med, 2015,41(4): 633-641.
6
Thille AW, Rodriguez P, Cabello B, et al.Patient-ventilator asynchrony during assisted mechanical ventilation [J].Intensive Care Med, 2006,32(10): 1515-1522.
7
Alexopoulou C, Kondili E, Plataki M, et al.Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation [J].Intensive Care Med, 2013, 39(6): 1040-1047.
8
Colombo D, Cammarota G, Alemani M, et al.Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony [J].Crit Care Med, 2011, 39(11): 2452-2457.
9
Goligher EC, Dres M, Patel BK, et al.Lung- and diaphragm-protective ventilation [J].Am J Respir Crit Care Med, 2020, 202(7): 950-961.
10
Ramirez II, Arellano DH, Adasme RS, et al.Ability of ICU health-care professionals to identify patient-ventilator asynchrony using waveform analysis [J].Respir Care, 2017, 62(2): 144-149.
11
李宏亮, 周建新.反转触发:易被忽视的人机不同步 [J/OL].中华重症医学电子杂志, 2023, 9(1): 19-24.
12
Blanch L, Sales B, Montanya J, et al.Validation of the Better Care ®system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study [J].Intensive Care Med, 2012, 38(5):772-780.
13
Mulqueeny Q, Ceriana P, Carlucci A, et al.Automatic detection of ineffective triggering and double triggering during mechanical ventilation [J].Intensive Care Med, 2007, 33(11): 2014-2018.
14
Chen CW, Lin WC, Hsu CH, et al.Detecting ineffective triggering in the expiratory phase in mechanically ventilated patients based on airway flow and pressure deflection: feasibility of using a computer algorithm [J].Crit Care Med, 2008, 36(2): 455-461.
15
Gutierrez G, Ballarino GJ, Turkan H, et al.Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow [J].Crit Care, 2011, 15(4): R167.
16
Sinderby C, Liu S, Colombo D, et al.An automated and standardized neural index to quantify patient-ventilator interaction [J].Crit Care,2013, 17(5): R239.
17
Telias I, Madorno M, Pham T, et al.Magnitude of synchronous and dyssynchronous inspiratory efforts during mechanical ventilation: a novel method [J].Am J Respir Crit Care Med, 2023, 207(9): 1239-1243.
18
Gholami B, Phan TS, Haddad WM, et al.Replicating human expertise of mechanical ventilation waveform analysis in detecting patientventilator cycling asynchrony using machine learning [J].Comput Biol Med, 2018, 97: 137-144.
19
Sottile PD, Albers D, Higgins C, et al.The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm [J].Crit Care Med, 2018, 46(2): e151-e157.
20
Casagrande A, Quintavalle F, Fernandez R, et al.An effective pressureflow characterization of respiratory asynchronies in mechanical ventilation [J].J Clin Monit Comput, 2021, 35(2): 289-296.
21
Rehm GB, Han J, Kuhn BT, et al.Creation of a robust and generalizable machine learning classifier for patient ventilator asynchrony [J].Methods Inf Med, 2018, 57(4): 208-219.
22
Loo NL, Chiew YS, Tan CP, et al.A machine learning model for realtime asynchronous breathing monitoring [J].IFAC Pap OnLine, 2018,51(27): 378-383.
23
Baedorf-Kassis EN, Glowala J, Poka KB, et al.Reverse triggering neural network and rules-based automated detection in acute respiratory distress syndrome [J].J Crit Care, 2023, 75: 154256.
24
Zhang L, Mao K, Duan K, et al.Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network [J].Comput Biol Med, 2020,120: 103721.
25
Pan Q, Zhang L, Jia M, et al.An interpretable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation [J].Comput Methods Programs Biomed, 2021, 204:106057.
26
Chen D, Lin K, Deng Z, et al.Attention-based convolutional long short-term memory neural network for detection of patient-ventilator asynchrony from mechanical ventilation [J].Biomed Signal Process Control, 2022, 78: 103923.
27
Pan Q, Jia M, Liu Q, et al.Identifying patient-ventilator asynchrony on a small dataset using image-based transfer learning [J].Sensors, 2021,21(12): 4149.
28
周益民, 宁泽惺, 罗旭颖, 等.基于半监督卷积神经网络进行人机不同步的识别 [J].首都医科大学学报, 2022, 43(5): 734-739.
29
van Diepen A, Bakkes T, De Bie A, et al.A model-based approach to generating annotated pressure support waveforms [J].J Clin Monit Comput, 2022, 36: 1739-1752.
30
Zhou C, Chase JG, Sun Q, et al.Reconstructing asynchrony for mechanical ventilation using a hysteresis loop virtual patient model [J].Biomed Eng Online, 2022, 21(1): 16.
31
Pham T, Montanya J, Telias I, et al.Automated detection and quantification of reverse triggering effort under mechanical ventilation[J].Crit Care, 2021, 25(1): 60.
32
Bakkes T, Van Diepen A, De Bie A, et al.Automated detection and classification of patient-ventilator asynchrony by means of machine learning and simulated data [J].Comput Methods Programs Biomed,2023, 230: 107333.
33
Alber M, Buganza Tepole A, Cannon WR, et al.Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences [J].NPJ Digit Med, 2019, 2: 115.
34
Blanch L, Sales B, Montanya J, et al.Validation of the Better Care®system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study [J].Intensive Care Med, 2012, 38(5):772-780.
35
Ng QA, Chiew YS, Wang X, et al.Network data acquisition and monitoring system for intensive care mechanical ventilation treatment[J].IEEE Access, 2021, 9: 91859-91873.
36
Adams JY, Lieng MK, Kuhn BT, et al.Development and validation of a multi-algorithm analytic platform to detect off-target mechanical ventilation [J].Sci Rep, 2017, 7(1): 14980.
37
Su L, Lan Y, Chi Y, et al.Establishment and application of a patientventilator asynchrony remote network platform for ICU mechanical ventilation: a retrospective study [J].J Clin Med, 2023, 12(4): 1570.
38
Le-Khac PH, Healy G, Smeaton AF.Contrastive representation learning: a framework and review [J].IEEE Access, 2020, 8: 193907-193934.
39
Zhuang F, Qi Z, Duan K, et al.A comprehensive survey on transfer learning [J].Proc IEEE Inst Electr Electron Eng, 2021, 109(1): 43-76.
40
Wang S, Li C, Wang R, et al.Annotation-efficient deep learning for automatic medical image segmentation [J].Nat Commun, 2021, 12(1):5915.
41
Lai J, Tan H, Wang J, et al.Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset [J].Nat Commun, 2023, 14(1): 3741.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[3] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[4] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[5] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[6] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[7] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[8] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[9] 韦小霞, 陈管洁, 李雪珠, 李晓青, 钱淑媛. 机械通气患者抗菌药物雾化吸入的临床实施[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 334-337.
[10] 苗明月, 周建新. 肺保护性镇静:应重视呼吸驱动和吸气努力的床旁评估[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 325-328.
[11] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[12] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[13] 李春光, 杨洋, 李斌, 华荣, 孙益峰, 李志刚. 不同外科修复模式治疗机械通气相关气管食管瘘的短期疗效评价[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 151-157.
[14] 刘晓鹏, 柳聪艳, 杨宁, 蔡琛, 李晓兵, 王红宇, 张思森. 三穴五针联合腹部提压法在机械通气患者肺康复中的疗效[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 193-198.
[15] 刘晴雯, 韩勇, 陈丽丹, 邓哲. 早期机械通气对成人院内心脏骤停病死率的影响:一项回顾性队列研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 203-206.
阅读次数
全文


摘要