切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 143 -147. doi: 10.3877/cma.j.issn.2096-1537.2025.02.008

学科建设

智慧化重症医学科建设:机遇与挑战
周飞虎1,(), 毛智1   
  1. 1. 100853 北京,解放军总医院第一医学中心重症医学科
  • 收稿日期:2025-03-11 出版日期:2025-05-28
  • 通信作者: 周飞虎

Construction of intelligent intensive care unit:opportunities and challenges

Feihu Zhou1,(), Zhi Mao1   

  1. 1. Department of Critical Care Medicine,the First Medical Centre,Chinese People's Liberation Army General Hospital,Beijing 100853,China
  • Received:2025-03-11 Published:2025-05-28
  • Corresponding author: Feihu Zhou
引用本文:

周飞虎, 毛智. 智慧化重症医学科建设:机遇与挑战[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 143-147.

Feihu Zhou, Zhi Mao. Construction of intelligent intensive care unit:opportunities and challenges[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2025, 11(02): 143-147.

大数据及人工智能(AI)等技术的飞速发展推动了智慧化ICU 的建设机遇。智慧化重症医学科(ICU)集合了AI、物联网(IoT)、大数据和机器人等诸多技术,是各种先进科技在ICU 的集中整合体现。智慧化ICU 建设在病情早期发现、预测、辅助决策、资源调配和远程等方面都能带来效果及效率的提升,但也面临着数据隐私、伦理和偏倚等方面的挑战。未来的智慧化ICU,可能是一种医师主导决策的“多模态数据-AI 算法-智能化设备”整体模式。本文从技术背景、应用现状、前景和挑战等方面探讨智慧化ICU 建设的机遇与挑战。

The rapid development of big data and artificial intelligence (AI) technologies has created the construction opportunities of intelligent ICU.The intelligent ICU integrates many technologies such as AI,internet of things,big data,robot and so on,which is the centralized integration of various advanced technologies in the ICU.The construction of intelligent ICU can improve the efficiency of early detection,prediction,auxiliary decision-making,resource allocation and remote,but it also faces challenges of data privacy,ethics and bias.The intelligent ICU in the future may be a doctor led decision-making “multimodal data AI algorithm intelligent device” framework.This article discusses the opportunities and challenges of intelligent ICU construction from the aspects of technical background,current applications,future prospects and challenges.

图1 医师决策主导的智慧化ICU“多模态数据-人工智能算法-智能化设备”模式
1
Cheng TY,Yu-Chieh Ho S,Chien TW,et al.Global research trends in artificial intelligence for critical care with a focus on chord network charts:Bibliometric analysis [J].Medicine (Baltimore),2023,102(38):e35082.
2
Mao Z,Liu C,Li Q,et al.Intelligent Intensive Care Unit:Current and Future Trends [J].Intensive Care Res,2023,16:1-7.
3
Leggett N,Abdelhamid YA,Deane AM,et al.Digital health interventions to improve recovery for intensive care unit survivors:A systematic review[J].Aust Crit Care,2025,38(2):101134.
4
Lazzarino R,Borek AJ,Honeyford K,et al.Views and uses of sepsis digital alerts in National Health Service Trusts in England:qualitative study with health care professionals [J].JMIR Hum Factors,2024,15;11:e56949.
5
Bai Y,Gu B,Tang C.Enhancing real-time patient monitoring in intensive care units with deep learning and the internet of things [J].Big Data,2025,17.
6
Nemomssa HD,Alemneh TB.Device for remote and realtime monitoring of neonatal vital signs in neonatal intensive care unit using internet of things:proof-of-concept study [J].J Clin Monit Comput,2023,37(2):585-592.
7
Smit JM,Krijthe JH,van Bommel J,et al.The future of artificial intelligence in intensive care:moving from predictive to actionable AI[J].Intensive Care Med,2023,49(9):1114-1116.
8
Schouten JS,Kalden MACM,van Twist E,et al.From bytes to bedside:a systematic review on the use and readiness of artificial intelligence in the neonatal and pediatric intensive care unit [J].Intensive Care Med,2024,50(11):1767-1777.
9
Conroy G,Mallapaty S.How China created AI model DeepSeek and shocked the world [J].Nature,2025,638(8050):300-301.
10
Bhatia M,Sood SK.Temporal informative analysis in smart-ICU monitoring:M-healthcare perspective [J].J Med Syst,2016,40(8):190.
11
Pereira AJ,Noritomi DT,Dos Santos MC,et al.Effect of Tele-ICU on clinical outcomes of critically ill patients:the TELESCOPE randomized clinical trial [J].JAMA,2024,3;332(21):1798-1807.
12
齐霜,毛智,胡新,等.基于专科信息系统建立的重症医学数据库:大型三甲医院重症医学数据库的模式 [J].中华危重病急救医学,2020,32(6):743-749.
13
Rohaut B,Calligaris C,Hermann B,et al.Multimodal assessment improves neuroprognosis performance in clinically unresponsive critical-care patients with brain injury [J].Nat Med,2024 Aug;30(8):2349-2355.
14
Gutierrez G.Artificial intelligence in the intensive care unit [J].Crit Care,2020,24; 24(1):101.
15
Lv X,Liu D,Chen X,et al.Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury:a systematic review and meta-analysis [J].BMC Infect Dis,2024,21;24(1):1454.
16
Mazhude F,Kramer RS,Hicks A,et al.Predictive analytics in cardiothoracic care:enhancing outcomes with the healthcare enabled by artificial intelligence in real time (HEART) project [J].J Maine Med Cent,2024,6(2):11.
17
Giebel GD,Raszke P,Nowak H,et al.Problems and barriers related to the use of AI-based clinical decision support systems:interview study[J].J Med Internet Res,2025,3; 27:e63377.
18
Rovati L,Gary PJ,Cubro E,et al.Development and usability testing of a patient digital twin for critical care education:a mixed methods study [J].Front Med (Lausanne),2024,11; 10:1336897.
19
Hou GY,Lal A,Schulte PJ,et al.Informing ICU digital twins:dynamic assessment of cardiorespiratory failure trajectories in patients with sepsis [J].Shock,2025,23.
20
Teng R,Ding Y,See KC.Use of robots in critical care:systematic review [J].J Med Internet Res,2022,16; 24(5):e33380.
21
Rengers TA,Thiels CA,Salehinejad H.Academic surgery in the era of large language models:a review [J].JAMA Surg,2024,1; 159(4):445-450.
22
Cui Z,Yan Y,Wang H,et al.Prioritisation of functional needs for ICU intelligent robots in China:a consensus study based on the national survey and nominal group technique [J].BMJ Open,2025,26; 15(2):e087588.
23
周东旭,马朋林.非公立医院ICU 建设——贵黔国际总医院经验分享 [J/OL].中华重症医学电子杂志,2023,9(4):412-416.
[1] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[2] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[3] 史福军, 魏巍, 林晓华, 廖玥, 郭志容. 单孔机器人辅助乳腺癌手术一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 125-127.
[4] 殷萍, 钟文涛, 张杰, 苏惠, 李娜, 王筱君, 杜峻峰, 郝雪梅. 机器人辅助腹腔镜联合胃镜胃间质瘤切除术的手术中管理[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 302-304.
[5] 郭任博, 邹本奎, 边家盛. 新辅助联合后入路机器人辅助腹腔镜前列腺根治术在高危前列腺癌中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 540-540.
[6] 何子勤, 李俊涛, 肖楚天 张翼飞 王德娟. 婴儿机器人辅助单孔肾盂成形术[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 541-541.
[7] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[8] 李雪青, 张弛, 刘小彭. 前列腺体积大小对机器人辅助腹腔镜下根治性前列腺切除术疗效及术后病理的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 372-376.
[9] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[10] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[11] 刘军, 王子函, 李梦新, 等. 单孔机器人保乳手术[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 162-165.
[12] 中国NOSES联盟, 中国医师协会结直肠肿瘤专业委员会NOSES学组, 中国医师协会结直肠肿瘤专业委员会机器人手术学组, 中国抗癌协会NOSES专业委员会. “机器人”结直肠肿瘤经自然腔道取标本手术专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 202-220.
[13] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[14] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[15] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?