切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 217 -220. doi: 10.3877/cma.j.issn.2096-1537.2025.03.001

述评

人工智能赋能重症教学:探索胜任力提升的全新途径
徐静媛, 谢波, 邱海波, 杨毅()   
  1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科 东南大学医学院重症医学教研室
  • 收稿日期:2025-03-19 出版日期:2025-08-28
  • 通信作者: 杨毅
  • 基金资助:
    东南大学附属中大医院住院医师规范化培训全国重点专业基地开放课题(ZDZYJD-JZ-2022-6); 东南大学研究生课程思政教育教学改革研究课题

AI-powered critical care education: exploring novel pathways to enhance competency

Jingyuan Xu, Bo Xie, Haibo Qiu, Yi Yang()   

  1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2025-03-19 Published:2025-08-28
  • Corresponding author: Yi Yang
引用本文:

徐静媛, 谢波, 邱海波, 杨毅. 人工智能赋能重症教学:探索胜任力提升的全新途径[J/OL]. 中华重症医学电子杂志, 2025, 11(03): 217-220.

Jingyuan Xu, Bo Xie, Haibo Qiu, Yi Yang. AI-powered critical care education: exploring novel pathways to enhance competency[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2025, 11(03): 217-220.

如何整体提升重症患者的诊疗水平从而提高危重症救治成功率,是实施“健康中国”战略的重要内容。从重症医学人才培养的角度提示我们更应该健全培养体系、优化教学方法,让重症教学从“知识传递”转向“能力培养”,最终提升重症医师的胜任力。人工智能(AI)在优化教学方法、强化教学训练、精准化学习路径等方面拥有独特的优势,未来可能成为重症教学中重塑学习资源和学习策略的关键方向。

Improving the overall standard of diagnosis and treatment for critically ill patients is a crucial component of the "Healthy China" strategy, directly impacting patient survival rates. This imperative underscores the need to refine our talent cultivation system in critical care medicine. It is essential to optimize pedagogical approaches, shifting the focus of education from mere "knowledge transmission" to comprehensive" competency development", ultimately enhancing the clinical competence of intensivists. Artificial intelligence offers unique advantages in this endeavor, particularly in optimizing teaching methodologies, enhancing clinical simulation training, and personalizing learning trajectories. As such, AI is poised to become a key direction for reshaping learning resources and learning strategies in critical care education.

1
Arrighi JA, Mendes LA, McConnaughey S; ACC Competency Management Committee. Competency-based medical education for fellowship training during the COVID-19 pandemic [J]. J Am Coll Cardiol, 2021, 77(13): 1681-1683.
2
Jabbour S, Fouhey D, Shepard S, et al. Measuring the impact of ai in the diagnosis of hospitalized patients: a randomized clinical vignette survey study [J]. JAMA, 2023, 330(23): 2275-2284.
3
Cheungpasitporn W, Thongprayoon C, Kashani KB. Advances in critical care nephrology through artificial intelligence [J]. Curr Opin Crit Care, 2024, 30(6): 533-541.
4
Gruda D. Three ways ChatGPT helps me in my academic writing [J]. Nature, 2024. Epub ahead of print.
5
Cooper A, Rodman A. AI and medical education - a 21st-century Pandora's Box [J]. N Engl J Med, 2023, 389(5): 385-387.
6
Liu VX. The future of AI in critical care is augmented, not artificial, intelligence [J]. Crit Care, 2020, 24(1): 673.
7
Charow R, Jeyakumar T, Younus S, et al. Artificial intelligence education programs for health care professionals: scoping review [J]. JMIR Med Educ, 2021, 7(4): e31043.
8
中国住院医师培训精英教学医院联盟. 中国住院医师培训精英教学医院联盟住院医师核心胜任力框架共识 [J]. 协和医学杂志, 2022, 13(1): 17-23.
9
Barrett H, Bion JF. An international survey of training in adult intensive care medicine [J]. Intensive Care Med, 2005 31(4): 553-561.
10
CoBaTrICE Collaboration, Bion JF, Barrett H. Development of core competencies for an international training programme in intensive care medicine [J]. Intensive Care Med, 2006, 32(9): 1371-1383.
11
Hu X, Xi X, Ma P, et al. Consensus development of core competencies in intensive and critical care medicine training in China [J]. Crit Care, 2016, 20(1): 330.
12
Bruno RR, Wolff G, Wernly B, et al. Virtual and augmented reality in critical care medicine: the patient's, clinician's, and researcher's perspective [J]. Crit Care, 2022, 26(1): 326.
13
Patrawalla P, Mayo P, Morris A. Closing the competency gap: preparing for the New Pulmonary and Critical Care Medicine and Critical Care Medicine Accreditation Council on graduate medical education requirements for critical care ultrasound training [J]. Chest, 2024, 166(2): 257-258.
14
Pastis NJ, Vanderbilt AA, Tanner NT, et al. Construct validity of the Simbionix bronch mentor simulator for essential bronchoscopic skills [J]. J Bronchology Interv Pulmonol, 2014, 21(4): 314-321.
15
Ost D, DeRosiers A, Britt EJ, et al. Assessment of a bronchoscopy simulator [J]. Am J Respir Crit Care Med, 2001, 164(12): 2248-2255.
16
Cold KM, Xie S, Nielsen AO, et al. Artificial intelligence improves novices' bronchoscopy performance: a randomized controlled trial in a simulated setting [J]. Chest, 2024, 165(2): 405-413.
17
Seam N, Lee AJ, Vennero M, et al. Simulation Training in the ICU [J]. Chest, 2019, 156(6): 1223-1233.
18
Fernandez R, Rosenman ED, Olenick J, et al. Simulation-based team leadership training improves team leadership during actual trauma resuscitations: a randomized controlled trial [J]. Crit Care Med, 2020, 48(1): 73-82.
19
Semeraro F, Cascella M, Montomoli J, et al. Comparative analysis of AI tools for disseminating CPR guidelines: Implications for cardiac arrest education [J]. Resuscitation, 2025, 208: 110528.
20
Collins JW, Marcus HJ, Ghazi A, et al. Ethical implications of AI in robotic surgical training: a Delphi consensus statement [J]. Eur Urol Focus, 2022, 8(2): 613-622.
21
Knopp MI, Warm EJ, Weber D, et al. AI-enabled medical education: threads of change, promising futures, and risky realities across four potential future worlds [J]. JMIR Med Educ, 2023, 9: e50373.
[1] 刘真真, 张莉, 陈程, 彭思婷, 赵瑞娜, 董一凡, 吕珂, 朱庆莉, 李建初, 杨筱. 将医疗安全不良事件案例分析融入超声医学课程思政教学的初步探索[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 876-880.
[2] 刘颂, 李秀, 陈莉, 宋鹏, 陆晓峰, 王萌, 管文贤. 基于示踪成像的真实情景教学在胃肠外科规范化培训中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 506-508.
[3] 靳翠红, 申英末, 储诚兵. 腹腔镜手术模拟器在腹腔镜下经腹腹膜前疝修补术教学培训中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 595-598.
[4] 谢钰嵘, 唐流康, 陈明政, 王伟利, 缪文学, 谢峰. 人工智能在肝胆外科临床教学中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 822-827.
[5] 崔少远, 傅博, 刘佳琦, 张双纳, 沈婉君, 宋泽龙, 朱晗玉. 小鼠肾脏透明荧光标本制备及光片荧光显微镜成像技能的教学分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 226-230.
[6] 梁爽, 崔敬, 王涌, 朱晗玉, 蔡广研. 思维导图结合案例教学在肾脏病学临床教学中的效果[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 231-235.
[7] 龚静, 孙海燕, 郝鹏. 妇产科医学生医患沟通能力的“全程化+学科融合”培养体系构建[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 624-628.
[8] 杜朴, 邹腾甜, 陈国豪, 徐文波. 血管介入模拟器辅以阶段式目标教学在神经介入教学中的应用[J/OL]. 中华介入放射学电子杂志, 2025, 13(04): 361-365.
[9] 麦颖, 刘忠民, 李爱群, 温淑娴. 医学检验本科生临床微生物学检验创新实习带教模式的实践探索[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(04): 249-256.
[10] 杨叶猗, 王建文, 杨叶蓁. DeepSeek赋能CBL教学在肾内科见习中的应用前景[J/OL]. 中华诊断学电子杂志, 2025, 13(04): 289-292.
[11] 毛森, 殷悦, 颜斌, 赵鲁平, 刘文晴, 刘波. 模拟仿真教学联合影像存储与传输系统在介入超声教学中的应用[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 213-216.
[12] 黎凤炎, 李福建, 殷秀秀, 张盛洪. 虚拟病人系统在诊断学教学中的应用研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 79-83.
[13] 胡立娟, 刘艳丽, 邹芳, 刘彩霞, 逯晶. 成果导向教育联合对分课堂教学模式在诊断学实验教学中的应用[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 84-88.
[14] 刘霖, 张华华, 杨敏, 张茗茹, 妙银沙, 何子君, 赵哲, 吉金山, 王瑾, 韩继明. DeepSeek实践应用在急诊与灾难医学教学中的效果评价[J/OL]. 中华卫生应急电子杂志, 2025, 11(04): 238-243.
[15] 桂静, 张文龙, 李亚. 气道廓清视频教学对RICU护士操作技能及患者痰液滞留率的影响[J/OL]. 中华卫生应急电子杂志, 2025, 11(04): 225-228.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?