切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 294 -298. doi: 10.3877/cma.j.issn.2096-1537.2025.03.012

综述

急性呼吸窘迫综合征炎症损伤中不同类型肺巨噬细胞功能作用的研究进展
李世明1, 刘涛1,2, 刘玲1, 邱海波1,()   
  1. 1 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
    2 210009 南京,东南大学医学院生物化学与分子生物学系
  • 收稿日期:2024-03-04 出版日期:2025-08-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 国家自然科学基金专项(82341032); 江苏省重症医学重点实验室项目(BM2020004); 科技部国家重点研发计划课题(2022YFC2504405)

Research progress on the functional role of different types of pulmonary macrophages in inflammatory injury of acute respiratory distress syndrome

Shiming Li1, Tao Liu1,2, Ling Liu1, Haibo Qiu1,()   

  1. 1 Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
    2 Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2024-03-04 Published:2025-08-28
  • Corresponding author: Haibo Qiu
引用本文:

李世明, 刘涛, 刘玲, 邱海波. 急性呼吸窘迫综合征炎症损伤中不同类型肺巨噬细胞功能作用的研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(03): 294-298.

Shiming Li, Tao Liu, Ling Liu, Haibo Qiu. Research progress on the functional role of different types of pulmonary macrophages in inflammatory injury of acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2025, 11(03): 294-298.

失控的炎症反应是脓毒症患者发生急性呼吸窘迫综合征(ARDS)的根本原因。单核细胞来源肺泡巨噬细胞(Mo-AMs)、组织驻留肺泡巨噬细胞(TRAMs)、肺间质巨噬细胞(PIMs)具有不同功能,在ARDS中发挥不同的作用。针对上述3种类型肺巨噬细胞,目前已提出抑制Mo-AMs生成、防止TRAMs炎症过度激活、增强PIMs抗炎功能等潜在治疗策略。本文就上述3种类型肺巨噬细胞在ARDS炎症损伤中的功能作用进行综述,为ARDS治疗提供进一步的研究方向。

The dysregulated inflammatory response is the primary pathophysiological mechanism underlying the onset of acute respiratory distress syndrome (ARDS) in septic patients. Distinct subpopulations of macrophages, namely monocyte-derived alveolar macrophages (Mo-AMs), tissue-resident alveolar macrophages (TRAMs), and pulmonary interstitial macrophages (PIMs), exhibit disparate functional profiles and exert varying impacts on the development of ARDS. Various therapeutic modalities have been proposed to target the three types of pulmonary macrophages mentioned above, encompassing interventions aimed at curtailing the generation of Mo-AMs, mitigating the hyperactivation of TRAM-mediated inflammation, and augmenting the anti-inflammatory capacities of PIMs. This review critically examines the functional paradigms of these pulmonary macrophage subtypes in the inflammatory pathogenesis of ARDS, thereby delineating avenues for further investigation and therapeutic exploration in ARDS management.

1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries [J]. JAMA, 2016, 315(8): 788-800.
2
Dhaliwal K, Scholefield E, Ferenbach D, et al. Monocytes control second-phase neutrophil emigration in established lipopolysaccharide-induced murine lung injury [J]. Am J Respir Crit Care Med, 2012, 186(6): 514-524.
3
Jiang Z, Zhou Q, Gu C, et al. Depletion of circulating monocytes suppresses IL-17 and HMGB1 expression in mice with LPS-induced acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(2): L231-L242.
4
Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans [J]. Immunology, 2020, 160(2): 126-138.
5
Williams H, Mack C, Baraz R, et al. Monocyte differentiation and heterogeneity: inter-subset and interindividual differences [J]. Int J Mol Sci, 2023, 24(10): 8757.
6
Vichare R, Janjic J M. Macrophage-targeted nanomedicines for ARDS/ALI: promise and potential [J]. Inflammation, 2022, 45(6): 2124-2141.
7
Li F, Piattini F, Pohlmeier L, et al. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection [J]. Sci Immunol, 2022, 7(73): eabj5761.
8
Aegerter H, Kulikauskaite J, Crotta S, et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection [J]. Nat Immunol, 2020, 21(2): 145-157.
9
Gómez-Rial J, Rivero-Calle I, Salas A, et al. Role of monocytes/macrophages in COVID-19 pathogenesis: implications for therapy [J]. Infect Drug Resist, 2020, 13: 2485-2493.
10
Lee J W, Chun W, Lee H J, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases [J]. Cells, 2021, 10(4): 897.
11
Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis [J]. Cell Metab, 2020, 32(3): 498-499.
12
Theofani E, Semitekolou M, Samitas K, et al. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma [J]. Allergy, 2022, 77(7): 2131-2146.
13
Lazarov T, Juarez-Carreño S, Cox N, et al. Physiology and diseases of tissue-resident macrophages [J]. Nature, 2023, 618(7966): 698-707.
14
Czimmerer Z, Nagy L. Epigenomic regulation of macrophage polarization: Where do the nuclear receptors belong? [J]. Immunol Rev, 2023, 317(1): 152-165.
15
Dong T, Chen X, Xu H, et al. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases [J]. Pharmacol Ther, 2022, 239: 108208.
16
H etzel M, Ackermann M, Lachmann N. Beyond "big eaters": the versatile role of alveolar macrophages in health and disease [J]. Int J Mol Sci, 2021, 22(7): 3308.
17
Chen S, Saeed A, Liu Q, et al. Macrophages in immunoregulation and therapeutics [J]. Signal Transduct Target Ther, 2023, 8(1): 207.
18
Luo J, Wang J, Zhang J, et al. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy- and NF-κB/PPARγ-mediated macrophage polarization [J]. Cells, 2022, 11(23): 3927.
19
Demkow U. Molecular mechanisms of neutrophil extracellular trap (NETs) degradation [J]. Int J Mol Sci, 2023, 24(5): 4896.
20
Xu F, Ma Y, Huang W, et al. Typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis [J]. Cell Death Dis, 2020, 11(8): 666.
21
Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution [J]. Nature, 2020, 582(7813): 571-576.
22
Evren E, Ringqvist E, Tripathi KP, et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity [J]. Immunity, 2021, 54(2): 259-275.
23
Dang W, Tao Y, Xu X, et al. The role of lung macrophages in acute respiratory distress syndrome [J]. Inflamm Res, 2022, 71(12): 1417-1432.
24
Chakarov S, Lim HY, Tan L, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches [J]. Science, 2019, 363(6432): eaau0964.
25
Jafarzadeh A, Chauhan P, Saha B, et al. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions [J]. Life Sci, 2020, 257: 118102.
26
Junqueira C, Crespo Â, Ranjbar S, et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation [J]. Nature, 2022, 606(7914): 576-584.
27
Janssen WJ, Barthel L, Muldrow A, et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury [J]. Am J Respir Crit Care Med, 2011, 184(5): 547-560.
28
Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control [J]. Int J Mol Sci, 2021, 23(1): 144.
29
Li H, Li Y, Song C, et al. Neutrophil extracellular traps augmented alveolar macrophage pyroptosis via AIM2 inflammasome activation in LPS-induced ALI/ARDS [J]. J Inflamm Res, 2021, 14: 4839-4858.
30
Jiang P, Jin Y, Sun M, et al. Extracellular histones aggravate inflammation in ARDS by promoting alveolar macrophage pyroptosis [J]. Mol Immunol, 2021, 135: 53-61.
31
Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients [J]. EBioMedicine, 2020, 57: 102833.
32
Wu D, Wang Y, Hu J, et al. Rab26 promotes macrophage phagocytosis through regulation of MFN2 trafficking to mitochondria [J]. FEBS J, 2023, 290(16): 4023-4039.
33
Mould KJ, Jackson ND, Henson PM, et al. Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets [J]. JCI Insight, 2019, 4(5): e126556. .
34
Cheng P, Li S, Chen H. Macrophages in Lung Injury, Repair, and Fibrosis [J]. Cells, 2021, 10(2): 436.
35
Huang X, Xiu H, Zhang S, et al. The Role of Macrophages in the Pathogenesis of ALI/ARDS [J]. Mediators Inflamm, 2018, 2018: 1264913.
36
Wang QL, Yang L, Liu ZL, et al. Sirtuin 6 regulates macrophage polarization to alleviate sepsis-induced acute respiratory distress syndrome via dual mechanisms dependent on and independent of autophagy [J]. Cytotherapy, 2022, 24(2): 149-160.
37
Ural BB, Yeung ST, Damani-Yokota P, et al. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties [J]. Sci Immunol, 2020, 5(45): eaax8756.
38
Xu J, Wang J, Wang X, et al. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages [J]. Cell Death Dis, 2020, 11(10): 934.
39
Sun H, Zhang Y, Wang J, et al. Application of lung-targeted lipid nanoparticle-delivered mRNA of soluble PD-L1 via SORT technology in acute respiratory distress syndrome [J]. Theranostics, 2023, 13(14): 4974-4992.
40
Wang H, Tumes DJ, Hercus TR, et al. Blocking the human common beta subunit of the GM-CSF, IL-5 and IL-3 receptors markedly reduces hyperinflammation in ARDS models [J]. Cell Death Dis, 2022, 13(2): 137.
41
Fung NH, Wang H, Vlahos R, et al. Targeting the human βc receptor inhibits inflammatory myeloid cells and lung injury caused by acute cigarette smoke exposure [J]. Respirology, 2022, 27(8): 617-629.
42
Sommer F, Ortiz Zacarı As NV, Heitman LH, et al. Inhibition of macrophage migration in zebrafish larvae demonstrates in vivo efficacy of human CCR2 inhibitors [J]. Dev Comp Immunol, 2021, 116: 103932.
43
Wang S, Bai J, Zhang YL, et al. CXCL1-CXCR2 signalling mediates hypertensive retinopathy by inducing macrophage infiltration [J]. Redox Biol, 2022, 56: 102438.
44
Snelgrove RJ, Goulding J, Didierlaurent AM, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection [J]. Nat Immunol, 2008, 9(9): 1074-1083.
45
Xu H, Zhu Y, Hsiao AW, et al. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery [J]. Biomaterials, 2023, 294: 121998.
46
Tang N, Yang Y, Xie Y, et al. CD274 (PD-L1) negatively regulates M1 macrophage polarization in ALI/ARDS [J]. Front Immunol, 2024, 15: 1344805.
47
Tu C, Wang Z, Xiang E, et al. Human umbilical cord mesenchymal stem cells promote macrophage PD-L1 expression and attenuate acute lung injury in mice [J]. Curr Stem Cell Res Ther, 2022, 17(6): 564-575.
48
Mehta P, Porter JC, Manson JJ, et al. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities [J]. Lancet Respir Med, 2020, 8(8): 822-830.
49
Zhou B, Magana L, Hong Z, et al. The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflammatory injury [J]. Nat Immunol, 2020, 21(11): 1430-1443.
50
Vanneste D, Bai Q, Hasan S, et al. MafB-restricted local monocyte proliferation precedes lung interstitial macrophage differentiation [J]. Nat Immunol, 2023, 24(5): 827-840.
51
Schyns J, Bai Q, Ruscitti C, et al. Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung [J]. Nat Commun, 2019, 10(1): 3964.
[1] 宗晓龙, 周芷晴, 王金莹, 胡慧卿, 李端阳, 王潇, 孙钰, 李真玉. 支气管肺泡灌洗液组织蛋白酶S水平与肺炎相关急性呼吸窘迫综合征严重程度及预后的相关性研究[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(05): 390-396.
[2] 程呈, 卢帅, 陈蓉, 李新萍, 白睿峰, 崔更力, 陈烁, 殷家伟, 胡建鹏, 汪垚卓, 蒋协远, 陈海翎. 基于基因表达数据库分析非酒精性脂肪性肝病炎症损伤相关核心基因[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 99-106.
[3] 马彬, 王启超, 王圣元, 赵虎林, 沈玥. 俯卧位通气管理在59例重症肺炎患者中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 1012-1014.
[4] 吴蓉, 蔡喆燚, 黄运华, 乐金海, 张萍, 陈献, 易琼. 跨肺驱动压导向呼气末正压通气对急性呼吸窘迫综合征患者肺功能及预后的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 866-871.
[5] 沈方龙, 伍正彬, 邵世锋, 陈地友, 肖钦, 郝志鹏, 王震, 赵辉, 王耀丽. 急性呼吸窘迫综合征患者的生物电阻抗断层成像特征及预测研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 897-903.
[6] 刘雅文, 孙延虎, 许晓函, 李岳, 王旭东. 电阻抗断层成像技术指导滴定呼气末正压通气治疗急性呼吸窘迫综合征患者的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 966-972.
[7] 鲁宇青, 李大伟, 邹剑峰, 胡子龙, 李哲, 李琦, 张丽媛, 霍萌, 沈玥, 帅维正. 新型俯卧位翻身辅助装置在急性呼吸窘迫综合征患者中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 757-761.
[8] 李兴华, 李桂仙, 刘颖, 耿红玉, 顾莹, 韩聪聪. 西维来司他钠联合甲泼尼龙琥珀酸钠、气道压力释放通气治疗对脓毒症所致急性呼吸窘迫综合征患者肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 789-795.
[9] 唐杉杉, 吴红梅, 王爽, 周静, 王露梦, 彭茜. 重症肺炎合并急性呼吸窘迫综合征继发多器官衰竭救治成功一例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 844-846.
[10] 赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.
[11] 田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰. 生物信息学筛选相关肺纤维化诊断的生物标志物研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 534-539.
[12] 张鹏, 史慢慢, 马辉, 吴佼佼, 赵暾, 张颖彬. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 226-230.
[13] 张建成, 谢冰, 尚游. 细胞迁移:脓毒症肠-肺交互作用的关键机制[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 163-166.
[14] 彭坤, 冯辉斌, 袁利学. 急性有机磷农药中毒并发急性呼吸窘迫综合征的危险因素相关性[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 668-674.
[15] 白霖果, 秦康杰, 郑杰, 李俊杰, 梅鸿, 刘鑫鑫, 覃松, 冯帮海, 余琨. 连翘酯苷A通过激活PPAR-γ抑制中性粒细胞胞外捕获网形成减轻脓毒症相关急性呼吸窘迫综合征[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 180-187.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?