切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 doi: 10.3877/cma.j.issn.2096-1537.2025.04.08-0009

综述

蛋白质-合成代谢抵抗导致老年脓毒症患者骨骼肌质量下降的机制研究
李锦源1,2, 麦涵钰1, 陈凯1, 周文艳2, 白吉佳2, 曹相原2, 丁欢2,()   
  1. 1. 750000 银川,宁夏医科大学
    2. 750000 银川,宁夏医科大学总医院
  • 通信作者: 丁欢
  • 基金资助:
    宁夏回族自治区重点研发计划项目(2022BEG03125)宁夏科技厅自然科学基金项目(2024AAC03544)

Mechanism of protein-anabolic resistance leading to decreased skeletal muscle mass in elderly sepsis

Jinyuan Li1,2, Hanyu Mai1, Kai Chen1, Wenyan Zhou2, Jijia Bai2, Xiangyuan Cao2, Huan Ding2,()   

  1. 1. Ningxia Medical University, Yinchuan 750000, China
    2. General Hospital of Ningxia Medical University, Yinchuan 750000, China
  • Corresponding author: Huan Ding
引用本文:

李锦源, 麦涵钰, 陈凯, 周文艳, 白吉佳, 曹相原, 丁欢. 蛋白质-合成代谢抵抗导致老年脓毒症患者骨骼肌质量下降的机制研究[J/OL]. 中华重症医学电子杂志, doi: 10.3877/cma.j.issn.2096-1537.2025.04.08-0009.

Jinyuan Li, Hanyu Mai, Kai Chen, Wenyan Zhou, Jijia Bai, Xiangyuan Cao, Huan Ding. Mechanism of protein-anabolic resistance leading to decreased skeletal muscle mass in elderly sepsis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), doi: 10.3877/cma.j.issn.2096-1537.2025.04.08-0009.

骨骼肌质量下降是脓毒症严重并发症之一,其特征是在组织学水平上肌力和纤维横截面积减弱、缩小和减少。表现为四肢松弛无力,尤其是近端肢体肌肉,同时会影响患者特别是老年患者的预后,降低生活质量,危及生命安全。脓毒症患者合成代谢抵抗导致蛋白质合成和分解之间的平衡被破坏,表现为蛋白质分解代谢增加与合成代谢减少,是造成骨骼肌质量下降的主要原因之一。目前,脓毒症骨骼肌分解代谢相关研究比较明确,蛋白质-合成代谢抵抗成为日趋关注的问题。因此,本文就蛋白质-合成代谢抵抗与脓毒症骨骼肌质量下降的相关性机制进行综述,为脓毒症骨骼肌质量下降的临床防治提供理论依据和方案。

The decline of skeletal muscle mass is one of the serious complications of sepsis.It is characterized by the weakend muscle strength, reduced fiber cross-sectional area and dismished muscle quantity. It manifests as flaccid weakness in the limbs, particularly in the proximal limb muscles. Meanwhile, it will affect the prognosis of patients, especially elderly patients, leading to their reduced quality of life and life safety risk. The anabolic resistance in sepsis patients leads to the disruption of the balance between protein synthesis and breakdown, manifested as increased protein catabolism and decreased anabolism, which is one of the main reasons for the decline of skeletal muscle mass. At present, the relevant research on skeletal muscle catabolism in sepsis is relatively well estabished, and protein-anabolic resistance has become an issue of increasing concern. Therefore, we review the correlative mechanisms between protein-anabolic resistance and the decline of skeletal muscle mass in sepsis, aiming to provide theoretical basis and solutions for the clinical prevention and treatment of the skeletal muscle loss in sepsis patients.

图1 年轻、老年和重症病人的全身和肌肉蛋白质净平衡[9]
[1]
Ibarz M, Haas L, Ceccato A, et al. The critically ill older patient with sepsis: a narrative review [J]. Ann Intensive Care, 2024, 14(1): 6.
[2]
Raurell-Torredà M, Arias-Rivera S, Martí JD, et al. Care and treatments related to intensive care unitacquired muscle weakness: a cohort study [J]. Aust Crit Care, 2021, 34(5): 435-445.
[3]
Jolley SE, Bunnell AE, Hough CL. ICU-acquired weakness [J]. Chest, 2016, 150(5): 1129-1140.
[4]
Van Aerde N, Meersseman P, Debaveye Y, et al. Five-year impact of ICU-acquired neuromuscular complications: a prospective, observational study [J]. Intensive Care Med, 2020, 46(6): 1184-1193.
[5]
Zanders L, Kny M, Hahn A, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting[J]. J Cachexia Sarcopenia Muscle, 2022, 13(1): 713-727.
[6]
Haberecht-Müller S, Krüger E, Fielitz J. Out of control: the role of the ubiquitin proteasome system in skeletal muscle during inflammation [J]. Biomolecules, 2021, 11(9): 1327.
[7]
Paulussen K, McKenna CF, Beals JW, et al. Anabolic resistance of muscle protein turnover comes in various shapes and sizes [J]. Front Nutr, 2021, 8: 615849.
[8]
Gamrin-Gripenberg L, Sundström-Rehal M, Olsson D, et al. An attenuated rate of leg muscle protein depletion and leg free amino acid efflux over time is seen in ICU long-stayers [J]. Crit Care, 2018, 22(1):13.
[9]
Morton RW, Traylor DA, Weijs P, et al. Defining anabolic resistance: implications for delivery of clinical care nutrition [J]. Curr Opin Crit Care, 2018, 24(2): 124-130.
[10]
Chevalier S, Burgos SA, Morais JA, et al. Protein and glucose metabolic responses to hyperinsulinemia,hyperglycemia, and hyperaminoacidemia in obese men [J]. Obesity (Silver Spring), 2015, 23(2): 351-358.
[11]
Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders [J]. J Physiol Sci, 2020, 70(1): 40.
[12]
Sundström Rehal M, Liebau F, Tjäder I, et al. A supplemental intravenous amino acid infusion sustains a positive protein balance for 24 hours in critically ill patients [J]. Crit Care, 2017, 21(1): 298.
[13]
Dickerson RN, Maish GO 3rd, Croce MA, et al. Influence of aging on nitrogen accretion during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39(3): 282-290.
[14]
Chapple LS, Kouw I, Summers MJ, et al. Muscle protein synthesis after protein administration in critical illness [J]. Am J Respir Crit Care Med, 2022, 206(6): 740-749.
[15]
Aragon AA, Tipton KD, Schoenfeld BJ. Age-related muscle anabolic resistance: inevitable or preventable?[J]. Nutr Rev, 2023, 81(4): 441-454.
[16]
Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients [J]. Eur J Clin Invest, 2024, 54(9): e14229.
[17]
Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? [J]. J Allergy Clin Immunol, 2020, 145(5): 1323-1331.
[18]
Dickerson RN, Maish GO 3rd, Croce MA, et al. Influence of aging on nitrogen accretion during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39(3): 282-290.
[19]
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy [J]. Cells, 2020, 9(9): 1970.
[20]
Markofski MM, Dickinson JM, Drummond MJ, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women [J]. Exp Gerontol, 2015, 65: 1-7.
[21]
Timmerman KL, Lee JL, Fujita S, et al. Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults [J]. Diabetes, 2010, 59(11): 2764-2771.
[22]
Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities [J]. J Endocrinol, 2016, 229(2): R67-81.
[23]
Liu P, Zhang Z, Cai Y, et al. Inhibition of the pyroptosis-associated inflammasome pathway: the important potential mechanism of ginsenosides in ameliorating diabetes and its complications [J]. Eur J Med Chem,2023, 253: 115336.
[24]
Lin J, Wang Q, Zhou S, et al. Tetramethylpyrazine: a review on its mechanisms and functions [J]. Biomed Pharmacother, 2022, 150: 113005.
[25]
Allen SL, Marshall RN, Edwards SJ, et al. The effect of young and old ex vivo human serum on cellular protein synthesis and growth in an in vitro model of aging [J]. Am J Physiol Cell Physiol, 2021, 321(1):C26-C37.
[26]
Rivas DA, Lessard SJ, Rice NP, et al. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling [J]. FASEB J, 2014, 28(9):4133-4147.
[27]
Vargas-Ortiz K, Pérez-Vázquez V, Macías-Cervantes MH. Exercise and Sirtuins: a way to mitochondrial health in skeletal muscle [J]. Int J Mol Sci, 2019, 20(11): 2717.
[28]
Braga M, Simmons Z, Norris KC, et al. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells [J]. Endocr Connect, 2017, 6(3): 139-150.
[29]
Foreman NA, Hesse AS, Ji LL. Redox signaling and sarcopenia: searching for the primary suspect [J]. Int J Mol Sci, 2021, 22(16): 9045.
[30]
Kjøbsted R, Hingst JR, Fentz J, et al. AMPK in skeletal muscle function and metabolism [J]. FASEB J, 2018,32(4): 1741.
[31]
Thomson DM. The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration[J]. Int J Mol Sci, 2018, 19(10): 3125.
[32]
Talib NF, Zhu Z, Kim KS. Vitamin D3 exerts beneficial effects on C2C12 myotubes through activation of the vitamin D receptor (VDR)/Sirtuins (SIRT)1/3 Axis [J]. Nutrients, 2023, 15(22): 4714.
[33]
Vilchinskaya NA, Rozhkov SV, Turtikova OV, et al. AMPK phosphorylation impacts apoptosis in differentiating myoblasts isolated from atrophied rat soleus muscle [J]. Cells, 2023, 12(6): 920.
[34]
Chaillou T, Montiel-Rojas D. Does the blunted stimulation of skeletal muscle protein synthesis by aging in response to mechanical load result from impaired ribosome biogenesis? [J]. Front Aging, 2023, 4:1171850.
[35]
Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy [J]. Dis Model Mech, 2013,6(1): 25-39.
[36]
Vilchinskaya N, Altaeva E, Lomonosova Y. Gaining insight into the role of FoxO1 in the progression of disuse-induced skeletal muscle atrophy [J]. Adv Biol Regul, 2022, 85: 100903.
[37]
Chen S, Villalta SA, Agrawal DK. FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle [J]. J Bone Miner Res, 2016, 31(3): 585-595.
[38]
Marcus JM, Andrabi SA. SIRT3 regulation under cellular stress: making sense of the ups and downs [J].Front Neurosci, 2018, 12: 799.
[39]
Zheng B, Ohkawa S, Li H, et al. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy [J]. FASEB J, 2010,24(8): 2660-2669.
[40]
Sanvee GM, Panajatovic MV, Bouitbir J, et al. Mechanisms of insulin resistance by simvastatin in C2C12 myotubes and in mouse skeletal muscle [J]. Biochem Pharmacol, 2019, 164: 23-33.
[41]
Knopp JL, Chase JG, Shaw GM. Increased insulin resistance in intensive care: longitudinal retrospective analysis of glycaemic control patients in a New Zealand ICU [J]. Ther Adv Endocrinol Metab, 2021, 12:20420188211012144.
[42]
Hong SH, Choi KM. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences [J]. Int J Mol Sci, 2020, 21(2): 494.
[43]
Yin M, Zhang H, Liu Q, et al. Determination of skeletal muscle mass by aspartate aminotransferase /alanine aminotransferase ratio, insulin and FSH in Chinese women with sarcopenia [J]. BMC Geriatr,2022, 22(1): 893.
[44]
Degens H. The role of systemic inflammation in age-related muscle weakness and wasting [J]. Scand J Med Sci Sports, 2010, 20(1): 28-38.
[45]
Heming N, Carlier R, Prigent H, et al. Effect of an enteral amino acid blend on muscle and gut functionality in critically ill patients: a proof-of-concept randomized controlled trial [J]. Crit Care, 2022,26(1): 358.
[46]
Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness [J]. JAMA,2013, 310(15): 1591-1600.
[47]
Tezze C, Sandri M, Tessari P. Anabolic resistance in the pathogenesis of sarcopenia in the elderly: role of nutrition and exercise in young and old people [J]. Nutrients, 2023, 15(18): 4073.
[48]
Flakoll PJ, Kulaylat M, Frexes-Steed M, et al. Amino acids augment insulin's suppression of whole body proteolysis [J]. Am J Physiol, 1989, 257(6 Pt 1): E839-847.
[49]
Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function [J]. Calcif Tissue Int,2015, 96(3): 183-195.
[50]
Groen BBL, Horstman AMH, Hamer HM, et al. Increasing insulin availability does not augment postprandial muscle protein synthesis rates in healthy young and older men [J]. J Clin Endocrinol Metab, 2016,101(11): 3978-3988.
[51]
Rasmussen BB, Fujita S, Wolfe RR, et al. Insulin resistance of muscle protein metabolism in aging [J].FASEB J, 2006, 20(6): 768-769.
[52]
Liu ZJ, Zhu CF. Causal relationship between insulin resistance and sarcopenia [J]. Diabetol Metab Syndr,2023, 15(1): 46.
[53]
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting [J]. Nat Rev Cancer, 2015, 15(1): 7-24.
[54]
Long YC, Cheng Z, Copps KD, et al. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways [J]. Mol Cell Biol, 2011, 31(3): 430-441.
[55]Li A, Shen P, Liu S, et al. Vitamin D alleviates skeletal muscle loss and insulin resistance by inducing vitamin D receptor expression and regulating the AMPK/SIRT1 signaling pathway in mice [J]. Food Science and Technology, 2021, 42: e47921.
[56]
Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y [J].Am J Clin Nutr, 2004, 80(3): 752-758.
[57]
Narvaez CJ, Matthews D, Broun E, et al. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue [J].Endocrinology, 2009, 150(2): 651-661.
[58]
Lee H, Lee H, Lim Y. Vitamin D(3) improves lipophagy-associated renal lipid metabolism and tissue damage in diabetic mice [J]. Nutr Res, 2020, 80: 55-65.
[59]
Benetti E, Mastrocola R, Chiazza F, et al. Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice [J]. PLoS One, 2018, 13(1): e0189707.
[60]
Reis NG, Assis AP, Lautherbach N, et al. Maternal vitamin D deficiency affects the morphology and function of glycolytic muscle in adult offspring rats [J]. J Cachexia Sarcopenia Muscle, 2022, 13(4): 2175-2187.
[61]
Das A, Gopinath SD, Arimbasseri GA. Systemic ablation of vitamin D receptor leads to skeletal muscle glycogen storage disorder in mice [J]. J Cachexia Sarcopenia Muscle, 2022, 13(1): 467-480.
[62]
Bass JJ, Kazi AA, Deane CS, et al. The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo [J]. J Physiol, 2021, 599(3): 963-979.
[63]
Nemeth Z, Patonai A, Simon-Szabó L, et al. Interplay of vitamin D and SIRT1 in tissue-specific metabolism-potential roles in prevention and treatment of non-communicable diseases including cancer [J].Int J Mol Sci, 2023, 24(7): 6154.
[64]
Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity [J]. Nature, 2009, 458(7241): 1056-1060.
[65]
Lin L, Chen K, Abdel Khalek W, et al. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3 [J]. PLoS One, 2014, 9(1): e85636.
[66]
Delanghe JR, Speeckaert R, Speeckaert MM. Behind the scenes of vitamin D binding protein: more than vitamin D binding [J]. Best Pract Res Clin Endocrinol Metab, 2015, 29(5): 773-786.
[67]Li A, Shen P, Liu S, et al. Vitamin D alleviates skeletal muscle loss and insulin resistance by inducing vitamin D receptor expression and regulating the AMPK/SIRT1 signaling pathway in mice [J]. Food Sci Technol,2021, 42: e47921.
[68]
Dunlop TW, Väisänen S, Frank C, et al. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha, 25-dihydroxyvitamin D3 and its nuclear receptor [J]. J Mol Biol, 2005,349(2): 248-260.
[69]
Cheng Z, White MF. Targeting forkhead box O1 from the concept to metabolic diseases: lessons from mouse models [J]. Antioxid Redox Signal, 2011, 14(4): 649-661.
[70]
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle [J]. Bone, 2015, 80: 131-142.
[71]
Kahn D, Macias E, Zarini S, et al. Quantifying the inflammatory secretome of human intermuscular adipose tissue [J]. Physiol Rep, 2022, 10(16): e15424.
[72]
Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention [J].Rev Endocr Metab Disord, 2017, 18(2): 153-165.
[73]
Hahn A, Kny M, Pablo-Tortola C, et al. Serum amyloid A1 mediates myotube atrophy via Toll-like receptors [J]. J Cachexia Sarcopenia Muscle, 2020, 11(1): 103-119.
[74]
Mukund K, Subramaniam S. Skeletal muscle: a review of molecular structure and function, in health and disease [J]. Wiley Interdiscip Rev Syst Biol Med, 2020, 12(1): e1462.
[75]
Flores-Opazo M, McGee SL, Hargreaves M. Exercise and GLUT4 [J]. Exerc Sport Sci Rev, 2020, 48(3):110-118.
[76]
Fujita S, Rasmussen BB, Cadenas JG, et al. Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling [J]. Diabetes, 2007, 56(6): 1615-1622.
[77]
Thirupathi A, de Souza CT. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha,and AMPK-SIRT1 during exercise [J]. J Physiol Biochem, 2017, 73(4): 487-494.
[78]
Hartl WH, Kopper P, Bender A, et al. Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models [J]. Crit Care, 2022, 26(1):7.
[1] 祝秋萍, 张琴, 潘建, 宋聪颖. 老年2型糖尿病患者骨骼肌质量的检测分析[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(02): 133-136.
[2] 陈思敏, 毛杰, 杜潇利, 张树泽. CT 与生物电阻抗法测定胃癌患者骨骼肌质量的比较研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 28-33.
[3] 中华医学会器官移植学分会肝移植学组, 中国医师协会器官移植医师分会. 中国肝移植受者肌肉减少症临床诊疗指南[J/OL]. 中华移植杂志(电子版), 2024, 18(06): 355-365.
[4] 钱锦华, 曹超, 徐敏, 左迪迪, 曹洁, 张婷, 翁玉蓉, 胡耀敏. 骨骼肌减少症与老年患者心脏结构及功能的相关性研究[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 14-18.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?