切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 doi: 10.3877/cma.j.issn.2096-1537.2025.08.21-0012

所属专题: 文献

综述

静脉-动脉体外膜肺氧合机械循环支持的研究进展
刘玲西, 郭军, 张雪, 孙瑞, 康焰()   
  1. 610041 成都,四川大学华西医院重症医学科
  • 收稿日期:2025-07-25
  • 通信作者: 康焰

Research progress on mechanical circulatory support of venoarterial extracorporeal membrane oxygenation

Lingxi Liu, Jun Guo, Xue Zhang, Rui Sun, Yan Kang()   

  1. Department of Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
  • Received:2025-07-25
  • Corresponding author: Yan Kang
引用本文:

刘玲西, 郭军, 张雪, 孙瑞, 康焰. 静脉-动脉体外膜肺氧合机械循环支持的研究进展[J/OL]. 中华重症医学电子杂志, doi: 10.3877/cma.j.issn.2096-1537.2025.08.21-0012.

Lingxi Liu, Jun Guo, Xue Zhang, Rui Sun, Yan Kang. Research progress on mechanical circulatory support of venoarterial extracorporeal membrane oxygenation[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), doi: 10.3877/cma.j.issn.2096-1537.2025.08.21-0012.

静脉-动脉体外膜肺氧合(VA-ECMO)通常为心源性休克(CS)、心搏骤停患者提供血流动力学支持,保证患者的器官灌注,为血运重建和再灌注留出时间。虽然当前ECMO技术迅速发展,但在临床实践上仍面临诸多挑战。本文通过对近年来关于VA-ECMO在国内外关键研究的分析,总结了VA-ECMO及其联合策略的应用进展、主要并发症的防控要点、规范化撤机流程及预后评估等,探讨其临床应用价值与未来发展趋势,为优化个体化治疗决策提供参考。未来可聚焦三大方向:病因分层研究、并发症技术攻关、AI驱动个体决策,最终实现从"泛化支持"转向"精准干预",最大限度地平衡风险获益,建立更精准化的ECMO管理体系。

Venoarterial extracorporeal membrane oxygenation (VA-ECMO) usually provides hemodynamic support for patients with cardiogenic shock (CS) and cardiac arrest, ensuring organ perfusion and leaving time for revascularization and reperfusion. Although ECMO technology is developing rapidly, it still faces many challenges in clinical practice. Through the analysis of key studies on VA-ECMO at home and abroad in recent years, we summarize the progress of VA-ECMO and its combination strategy, the key points of prevention and management of major complications, the standardized withdrawal process and prognosis evaluation, explore the value of clinical application and development trend in future, aim to provide reference for optimizing individualized treatment decisions. In the future, we can focus on three major directions: etiological stratification research, complication technology research, and AI-driven individual decision-making. As a result, realizing the shift from "generalized support" to "precise intervention", maximizing the balance of risks and benefits and establishing a more accurate ECMO management system.

图1 SCAI分类。SCAI分类的金字塔描述了SCAI休克的A~E阶段,经Wiley & Sons许可转载,原文发表于SCAI临床专家关于CS分类的共识声明(2019)[13] 注:SCAI为心血管造影与干预学会;CS为心源性休克;ECMO为体外膜肺氧合;1 mmHg=0.133 kPa
图2 基于当前临床实践的VA-ECMO支持期间减压策略的分类。主动引流策略直接依赖于泵的作用:(1)额外的静脉管路引流,管路通过"y"形连接器整合到VA-ECMO回路中;(2)连续或搏动泵装置,穿过主动脉瓣并将左心室前负荷顺行射入主动脉;(3)通过IABP的间接负压降低后负荷。被动引流策略利用左心房和右心房之间的压力梯度来降低左心室前负荷,包括破坏房间隔的各种经皮技术,而主动引流策略已针对4个解剖部位开发:肺动脉、左心房、左心室和主动脉,其中可以通过外科或经皮技术进入这4个位置中的每一个(根据Lüsebrink等[38]修改) 注:VA-ECMO为静脉-动脉体外膜肺氧合;IABP为主动脉内球囊反搏
[1]
Williams B, Bernstein W. Review of venoarterial extracorporeal membrane oxygenation and development of intracardiac thrombosis in adult cardiothoracic patients [J]. J Extra Corpor Technol, 2016, 48(4): 162-167.
[2]
Boulate D, Luyt CE, Pozzi M, et al. Acute lung injury after mechanical circulatory support implantation in patients on extracorporeal life support: an unrecognized problem [J]. Eur J Cardiothorac Surg, 2013, 44(3): 544-549; discussion 549-550.
[3]
Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock [J]. N Engl J Med, 2012, 367(14): 1287-1296.
[4]
Lüsebrink E, Orban M, Kupka D, et al. Prevention and treatment of pulmonary congestion in patients undergoing venoarterial extracorporeal membrane oxygenation for cardiogenic shock [J]. Eur Heart J, 2020, 41(38): 3753-3761.
[5]
Ostadal P, Mlcek M, Kruger A, et al. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock [J]. J Transl Med, 2015, 13: 266.
[6]
Rao P, Khalpey Z, Smith R, et al. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest [J]. Circ Heart Fail, 2018, 11(9): e004905.
[7]
Burkhoff D, Sayer G, Doshi D, et al. Hemodynamics of mechanical circulatory support [J]. J Am Coll Cardiol, 2015, 66(23): 2663-2674.
[8]
Wilson J, Fisher R, Caetano F, et al. Managing Harlequin Syndrome in VA-ECMO - do not forget the right ventricle [J]. Perfusion, 2022, 37(5): 526-529.
[9]
Thiele H, Zeymer U, Akin I, et al. Extracorporeal life support in infarct-related cardiogenic shock [J]. N Engl J Med, 2023, 389(14): 1286-1297.
[10]
Desch S, Zeymer U, Akin I, et al. Routine extracorporeal life support in infarct-related cardiogenic shock: 1-year results of the ECLS-SHOCK trial [J]. Eur Heart J, 2024, 45(39): 4200-4203.
[11]
Kolte D, Khera S, Aronow WS, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States [J]. J Am Heart Assoc, 2014, 3(1): e000590.
[12]
Kunadian V, Qiu W, Ludman P, et al. Outcomes in patients with cardiogenic shock following percutaneous coronary intervention in the contemporary era: an analysis from the BCIS database (British Cardiovascular Intervention Society) [J]. JACC Cardiovasc Interv, 2014, 7(12): 1374-1385.
[13]
Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019 [J]. Catheter Cardiovasc Interv, 2019, 94(1): 29-37.
[14]
Del Rio-Pertuz G, Benjanuwattra J, Juarez M, et al. Efficacy of mechanical circulatory support used before versus after primary percutaneous coronary intervention in patients with cardiogenic shock from ST-elevation myocardial infarction: a systematic review and meta-analysis [J]. Cardiovasc Revasc Med, 2022, 42: 74-83.
[15]
Zeymer U, Freund A, Hochadel M, et al. Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: an individual patient data meta-analysis of randomised trials [J]. Lancet, 2023, 402(10410): 1338-1346.
[16]
Ostadal P, Rokyta R, Karasek J, et al. Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: results of the ECMO-CS randomized clinical trial [J]. Circulation, 2023, 147(6): 454-464.
[17]
Brunner S, Guenther S, Lackermair K, et al. Extracorporeal life support in cardiogenic shock complicating acute myocardial infarction [J]. J Am Coll Cardiol, 2019, 73(18): 2355-2357.
[18]
Banning AS, Sabaté M, Orban M, et al. Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: the multicentre, randomised EURO SHOCK trial [J]. EuroIntervention, 2023, 19(6): 482-492.
[19]
Thiele H, Møller JE, Henriques J, et al. Temporary mechanical circulatory support in infarct-related cardiogenic shock: an individual patient data meta-analysis of randomised trials with 6-month follow-up [J]. Lancet, 2024, 404(10457): 1019-1028.
[20]
Hanlon-Pena PM, Quaal SJ. Intra-aortic balloon pump timing: review of evidence supporting current practice [J]. Am J Crit Care, 2011, 20(4): 323-333; quiz 334.
[21]
Fujino T, Imamura T, Kinugawa K. Future perspectives of intra-aortic balloon pumping for cardiogenic shock [J]. Int Heart J, 2020, 61(3): 424-428.
[22]
Zhang Q, Han Y, Sun S, et al. Mortality in cardiogenic shock patients receiving mechanical circulatory support: a network meta-analysis [J]. BMC Cardiovasc Disord, 2022, 22(1): 48.
[23]
Low C, Ling RR, Lau M, et al. Mechanical circulatory support for cardiogenic shock: a network meta-analysis of randomized controlled trials and propensity score-matched studies [J]. Intensive Care Med, 2024, 50(2): 209-221.
[24]
Kim MC, Lim Y, Lee SH, et al. Early left ventricular unloading or conventional approach after venoarterial extracorporeal membrane oxygenation: the EARLY-UNLOAD randomized clinical trial [J]. Circulation, 2023, 148(20): 1570-1581.
[25]
Lim Y, Kim MC, Lee SH, et al. Early left ventricular unloading after venoarterial extracorporeal membrane oxygenation: 1-year outcomes of the EARLY-UNLOAD randomized clinical trial [J]. Eur Heart J Acute Cardiovasc Care, 2025, 14(4): 203-211.
[26]
Glazier JJ, Kaki A. The Impella device: historical background, clinical applications and future directions [J]. Int J Angiol, 2019, 28(2): 118-123.
[27]
Cappannoli L, Galli M, Zito A, et al. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) with vs. without left ventricular unloading by Impella: a systematic review and meta-analysis [J]. Eur Heart J Qual Care Clin Outcomes, 2023, 9(4): 358-366.
[28]
Schrage B, Becher PM, Bernhardt A, et al. Left ventricular unloading is associated with lower mortality in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an international, multicenter cohort study [J]. Circulation, 2020, 142(22): 2095-2106.
[29]
Char S, Fried J, Melehy A, et al. Clinical efficacy of direct or indirect left ventricular unloading during venoarterial extracorporeal membrane oxygenation for primary cardiogenic shock [J]. J Thorac Cardiovasc Surg, 2023, 165(2): 699-707.e5.
[30]
Radakovic D, Zittermann A, Rojas SV, et al. Left ventricular unloading in patients on venoarterial extracorporeal membrane oxygenation therapy in cardiogenic shock: prophylactic versus bail-out strategy [J]. Life (Basel), 2023, 13(2): 582.
[31]
Møller JE, Engstrøm T, Jensen LO, et al. Microaxial flow pump or standard care in infarct-related cardiogenic shock [J]. N Engl J Med, 2024, 390(15): 1382-1393.
[32]
Grandin EW, Nunez JI, Willar B, et al. Mechanical left ventricular unloading in patients undergoing venoarterial extracorporeal membrane oxygenation [J]. J Am Coll Cardiol, 2022, 79(13): 1239-1250.
[33]
Rajsic S, Breitkopf R, Treml B, et al. Association of anti-factor Xa-guided anticoagulation with hemorrhage during ECMO support: A systematic review and meta-analysis [J]. Clin Cardiol, 2024, 47(5): e24273.
[34]
Saracoglu A, Fawzy I, Saracoglu KT, et al. Point of care guided coagulation management in adult patients on ECMO: a systematic review and meta-analysis [J]. J Crit Care, 2024, 83: 154830.
[35]
Cartwright B, Bruce HM, Kershaw G, et al. Hemostasis, coagulation and thrombin in venoarterial and venovenous extracorporeal membrane oxygenation: the HECTIC study [J]. Sci Rep, 2021, 11(1): 7975.
[36]
Vlok R, Buscher H, Delaney A, et al. Anticoagulation and associated complications in veno-arterial extracorporeal membrane oxygenation in adult patients: a systematic review and meta-analysis [J]. Crit Care Resusc, 2024, 26(4): 332-363.
[37]
Ezad SM, Ryan M, Donker DW, et al. Unloading the left ventricle in venoarterial ECMO: in whom, when, and how? [J]. Circulation, 2023, 147(16): 1237-1250.
[38]
Lüsebrink E, Binzenhöfer L, Kellnar A, et al. Venting during venoarterial extracorporeal membrane oxygenation [J]. Clin Res Cardiol, 2023, 112(4): 464-505.
[39]
Bréchot N, Demondion P, Santi F, et al. Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation [J]. Eur Heart J Acute Cardiovasc Care, 2018, 7(1): 62-69.
[40]
Aso S, Matsui H, Fushimi K, et al. The effect of intraaortic balloon pumping under venoarterial extracorporeal membrane oxygenation on mortality of cardiogenic patients: an analysis using a nationwide inpatient database [J]. Crit Care Med, 2016, 44(11): 1974-1979.
[41]
Björnsdóttir B, Biancari F, Dalén M, et al. Postcardiotomy venoarterial extracorporeal membrane oxygenation with and without intra-aortic balloon pump [J]. J Cardiothorac Vasc Anesth, 2022, 36(8 Pt B): 2876-2883.
[42]
Vallabhajosyula S, O'Horo JC, Antharam P, et al. Concomitant intra-aortic balloon pump use in cardiogenic shock requiring veno-arterial extracorporeal membrane oxygenation [J]. Circ Cardiovasc Interv, 2018, 11(9): e006930.
[43]
Russo JJ, Aleksova N, Pitcher I, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock [J]. J Am Coll Cardiol, 2019, 73(6): 654-662.
[44]
Meertens MM, Tichelbäcker T, Macherey-Meyer S, et al. Meta-analysis of extracorporeal membrane oxygenation in combination with intra-aortic balloon pump vs. extracorporeal membrane oxygenation only in patients with cardiogenic shock due to acute myocardial infarction [J]. Front Cardiovasc Med, 2022, 9: 1104357.
[45]
Baran C, Ozcinar E, Kayan A, et al. Comparison of ECMO, IABP and ECMO + IABP in the postoperative period in patients with postcardiotomy shock [J]. J Cardiovasc Dev Dis, 2024, 11(9): 283.
[46]
Tongers J, Sieweke JT, Kühn C, et al. Early escalation of mechanical circulatory support stabilizes and potentially rescues patients in refractory cardiogenic shock [J]. Circ Heart Fail, 2020, 13(3): e005853.
[47]
Hsu HR, Sekhar P, Grover J, et al. Predictors of successful weaning from veno-arterial extracorporeal membrane oxygenation (V-A ECMO): a systematic review and meta-analysis [J]. PLoS One, 2025, 20(3): e0310289.
[48]
Lee BR, Choi KH, Kim EJ, et al. VA-ECMO weaning strategy using adjusted pulse pressure by vasoactive inotropic score in AMI complicated by cardiogenic shock [J]. ESC Heart Fail, 2024, 11(5): 2749-2758.
[49]
Petermichl W, Philipp A, Foltan M, et al. Long-term outcomes of out-of-center veno-arterial ECMO cannulation for cardiopulmonary failure: investigation of prognostic parameters for a decision support tool - a 16-year retrospective study [J]. Scand J Trauma Resusc Emerg Med, 2025, 33(1): 81.
[50]
Bairdain S, Betit P, Craig N, et al. Diverse morbidity and mortality among infants treated with venoarterial extracorporeal membrane oxygenation [J]. Cureus, 2015, 7(4): e263.
[51]
Schmidt M, Burrell A, Roberts L, et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score [J]. Eur Heart J, 2015, 36(33): 2246-2256.
[52]
Muller G, Flecher E, Lebreton G, et al. The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock [J]. Intensive Care Med, 2016, 42(3): 370-378.
[53]
Pabst D, Foy AJ, Peterson B, et al. Predicting survival in patients treated with extracorporeal membrane oxygenation after myocardial infarction [J]. Crit Care Med, 2018, 46(5): e359-e363.
[54]
余海佳, 李静超, 宋慧慧, 等. 早期VA-ECMO支持在急诊经皮冠脉介入治疗围手术期的应用价值 [J]. 中华急诊医学杂志, 2024, 33(7): 946-954.
[1] 刘小娜, 史博慧, 马晓霞, 陈瑶, 郝娜. 乳腺癌不同手术方式对术后并发症及康复影响的对比观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 551-554.
[2] 欧阳骏骏, 蔡宝, 徐冰. 经脐单孔及常规腹腔镜阑尾切除术对阑尾炎患儿的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 566-569.
[3] 张聪, 李成. 胰头区恶性肿瘤外科手术预后现状及相关因素的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 574-578.
[4] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[5] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[6] 菅锎宇, 常如玉, 王达, 顼倩茹, 蒋麟, 贾宝雷, 邱宇轩, 梁峰. 进展期食管胃结合部癌不同手术方式的近期疗效研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 517-522.
[7] 杨敏, 辛林璞, 杜峻峰. 三精准管理方案对直肠癌造口术后造口并发症的预防效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 531-534.
[8] 徐其银, 韩尚志. 术前结合术后营养支持对直肠癌患者康复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 543-546.
[9] 赵燕玲, 王珩, 秦勤, 李静. 不同手术在食管裂孔疝合并胃食管反流病患者中的应用观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 421-424.
[10] 曾舒昊, 康博禹, 郑高赞, 郑建勇, 丰帆. 青年结直肠癌患者的临床病理特征及预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 449-452.
[11] 李盼, 张华秦. 不同腹腔镜胆囊切除术治疗胆囊结石的疗效比较研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 388-391.
[12] 唐健雄, 李绍杰. 我国腹腔镜疝外科治疗现状、问题与未来[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 355-358.
[13] 宁国龙, 左伟, 侯强强. 两种不同手术方案治疗Meckel憩室肠重复畸形患儿的回顾性研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 380-383.
[14] 辛林璞, 杨敏, 杜峻峰. 五定四观察循证方案对直肠癌造口患者生活质量与应用效果的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 409-412.
[15] 王淼, 贺佳佳, 潘颖威, 王小兰, 姚袆, 刘明宝, 陆兮, 苏丽洁. 远端胆管癌术后生存预后及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 582-588.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?