切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2016, Vol. 02 ›› Issue (03) : 199 -204. doi: 10.3877/cma.j.jssn.2096-1537.2016.03.013

所属专题: 文献

综述

感染性心肌病的研究进展
卢年芳, 席修明   
  • 收稿日期:2016-05-21 出版日期:2016-08-28
  • 通信作者: 席修明

Progress in the study of septic cardiomyopathy

Nianfang Lu, Xiuming Xi   

  • Received:2016-05-21 Published:2016-08-28
  • Corresponding author: Xiuming Xi
  • About author:
    Corresponding author: Xi Xiuming, Email:
引用本文:

卢年芳, 席修明. 感染性心肌病的研究进展[J]. 中华重症医学电子杂志, 2016, 02(03): 199-204.

Nianfang Lu, Xiuming Xi. Progress in the study of septic cardiomyopathy[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2016, 02(03): 199-204.

感染性心肌病的发病率高,一旦出现感染性心肌病患者预后极差。虽然关于感染性心肌病有动物实验和临床研究,但其发病机制、治疗等方面仍存在居多争议。本文就感染性心肌病的发病机制、诊断、血流动力学变化以及治疗做一综述,以期对将来基础和临床研究有所帮助。

Septic cardiomyopathy has high incidence and poor outcomes. Many experimental and clinical studies have been conducted in the fields of septic cardiomyopathy but the pathogenesis and therapeutic options remain unclear and controversial. In this editorial article, we will summarize the findings of previous studies and discuss the pathogenesis, hemodynamic changes, diagnosis and potential therapeutic recommendation in septic cardiomyopathy, aiming to to help continue further research in our understanding of septic cardiomyopathy at a more comprehensive level.

[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8):801–810.
[2]
李真玉, 陈兵. 脓毒症心肌抑制的诊治进展. 中国循环杂志, 2015, 30(7):705–707.
[3]
Cunnion RE, Schaer GK, Parker MM, et al. The coronary circulation in human septic shock[J]. Circulation, 1986, 73(4):637–644.
[4]
Vieillard-Baron A. Septic cardiomyopathy[J]. Ann Intensive Care, 2011, 1(1):6.
[5]
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care, 2016, 4(1):22.
[6]
Pathan N, Franklin JL, Eleftherohorinou H, et a1. Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase[J]. Crit Care Med, 2011, 39(7):1692–1711.
[7]
Barth E, Radermacher P, Thiemermann C, et al. Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock[J]. Crit Care Med, 2006, 34(2):307–313.
[8]
李莉, 严静, 陈昌勤, 等. 线粒体损伤在脓毒症大鼠心肌细胞凋亡中的作用[J]. 中华急诊医学杂志, 2012, 21(11):1221–1225.
[9]
HobaiI A, Edgecomb J, LaBarge K, et a1. Dysregulation of intracellular calcium transporters in animal models of sepsis induced cardiomyopathy[J]. Shock, 2015, 43(1):3–15.
[10]
MacKenzie A. Endothelium-derived vasoactive agents, AT1 receptors and inflammation[J]. Pharmacol Ther, 2011, 131(2):187–203.
[11]
Salgado DR, Rocco JR, Silva E, et a1. Modulation of the reninangiotensin-aldosterone system in sepsis: a new therapeutic approach[J]? Expert Opin Ther Targets, 2010, 14(1):11–20.
[12]
Jabot J, Monnet X, Bouchra L, et al. Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function[J]. Crit Care Med, 2009, 37(11):2913–2918.
[13]
Wang J, Ji W, Xu Z, et al. Clinical significance of plasma levels of brain natriuretic peptide and cardiac troponin T in patients with sepsis[J]. Exp Ther Med, 2016, 11(1):154–156.
[14]
Parker MM, McCarthy KE, Ognibene FP, et al. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans[J]. Chest, 1990, 97(1):126–131.
[15]
Bouhemad B, Nicolas RA, Arbelot C, et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction[J]. Crit Care Med, 2009, 37(2):441–447.
[16]
Røsjø H, Varpula M, Hagve TA, et al. The FINNSEPSIS Study Group. Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome[J]. Intensive Care Med, 2011, 37(1):77–85.
[17]
Lorigados CB, Soriano FG, Szabo C. Pathomeehanisms of myocardial dysfunction in sepsis[J]. Endocr Metab Immune Disord Drug Targets, 2010, 10(3):274–284.
[18]
Merx MW, Weber C. Sepsis and the heart[J]. Circulation, 2007, 116(7):793–802.
[19]
Kalbitz M, Grailer JJ, Fattahi F, et al. Role of extracellular histones in the cardiomyopathy of sepsis[J]. FASEB J, 2015, 29(5):2185–2193.
[20]
Alhamdi Y, Abrams ST, Cheng Z, et al. Circulating histones are major mediators of cardiac injury in patients with sepsis[J]. Crit Care Med, 2015.43(10):2094–2103.
[21]
Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography[J]. Eur J Echocardiogr, 2009, 10(2):165–193.
[22]
Ng PY, Sin WC, Ng AK, et al. Speckle tracking echocardiography in patients with septic shock: a case control study (SPECKSS)[J]. Crit Care, 2016, 20(1):145.
[23]
Delphine H, Martin K, Julien N, et al. Comparison of real-time three dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease[J]. Am J Cardiol, 2012, 109(2):180–186.
[24]
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock[J]. Ann Intern Med, 1984, 100(4):483–490.
[25]
Jardin F, Brun-Ney D, Auvert B, et al. Sepsis-related cardiogenic shock[J]. Crit Care Med, 1990, 18(10):1055–1060.
[26]
Repessé X, Charron C, Vieillard BA. Evaluation of left ventricular systolic function revisited in septic shock[J]. Crit Care, 2013, 17(4):164–167.
[27]
Bouhemad B, Nicolas RA, Arbelot C, et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction[J]. Crit Care Med, 2009, 37(2):441–447.
[28]
Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock[J]. Eur Heart J, 2012, 33(7):895–903.
[29]
Bouhemad B, Nicolas-Robin A, Arbelot C, et al. Isolated and reversible impairment of ventricular relaxation in patients with septic shock[J]. Crit Care Med, 2008, 36(3):766–774.
[30]
Kimchi A, Ellrodt AG, Berman DS, et al. Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study[J]. J Am Coll Cardiol, 1984, 4(5):945–951.
[31]
Hogue B, Chagnon F, Lesur O. Resuscitation fluids and endotoxin-induced myocardial dysfunction: is selection a load-independent differential issue[J]? Shock, 2012, 38(3):307–313.
[32]
Morelli A, De Castro S, Teboul JL, et a1. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression[J]. Intensive Care Med, 2005, 31(5):638–644.
[33]
Avgeropoulou C, Andreadou I, Markantonis KS, et al. The Ca-sensitizer levosimendan improves oxidative damage, BNP and pro-inflammatory cytokine levels in patients with advanced decompensated heart failure in comparison to dobutamine[J]. Eur J Heart Fail, 2005, 7(5):882–887.
[34]
Hamzaoui O, Georger JF, Monnet x, et a1. Early administration of norepinephrine increases cardiac preload and cardiac 0utput in septic patients with life-threatening hypotension[J]. Crit Care, 2010, 14(4):R142.
[35]
De Backer D, Aldecoa C, Njimi H, et al. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis[J]. Crit Care Med, 2012, 40(3):725–730.
[36]
Dellinger RP, Levy MM, Rhodes A, et a1. Surviving sepsis Campaign: international guidelines for management of severe sepsis and septic shock2012[J]. Intensive Care Med, 2013, 39(2):165–228.
[37]
Solomon SB, Minneci PC, Deans KJ, et al. Effects of intra-aortic balloon counterpulsation in a model of septic shock[J]. Crit Care Med, 2009, 37(1):7–18.
[38]
郭炜, 盛博, 赵磊, 等. 主动脉球囊反搏术在感染性休克患者抢救治疗中的应用价值. 中国危重病急救医学, 2012, 24(1):46–49.
[39]
Pořízka M, Kopecký P, Prskavec T, et al. Successful use of extra-corporeal membrane oxygenation in a patient with streptococcal sepsis: a case report and review of literature[J]. Prague Med Rep, 2015, 116(1):57–63.
[40]
Fujisaki N, Takahashi A, Arima T, et al. Successful treatment of panton-valentine leukocidin-expressing Staphylococcus aureus-associated pneumonia co-infected with influenza using extracorporeal membrane oxygenation[J]. In Vivo, 2014, 28(5):961–965.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[12] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[13] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要