切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2016, Vol. 02 ›› Issue (03) : 213 -217. doi: 10.3877/cma.j.jssn.2096-1537.2016.03.015

所属专题: 重症医学 文献

综述

脓毒症相关免疫抑制:监测与挑战
薛明, 徐静媛, 刘玲, 黄英姿, 邱海波   
  • 收稿日期:2016-07-27 出版日期:2016-08-28
  • 通信作者: 邱海波
  • 基金资助:
    江苏省临床医学科技专项(BL2013030); 国家自然科学基金(81571874); 国家卫生计生委医药卫生科技发展研究中心专项课题(WH2015-01-01)

Sepsis-induced immunosappression i monitoring and chanccenge

Ming Xue, Jingyuan Xu, Ling Liu, Yingzi Huang, Haibo Qiu   

  • Received:2016-07-27 Published:2016-08-28
  • Corresponding author: Haibo Qiu
  • About author:
    Corresponding author:Qiu Haibo, Email:
引用本文:

薛明, 徐静媛, 刘玲, 黄英姿, 邱海波. 脓毒症相关免疫抑制:监测与挑战[J]. 中华重症医学电子杂志, 2016, 02(03): 213-217.

Ming Xue, Jingyuan Xu, Ling Liu, Yingzi Huang, Haibo Qiu. Sepsis-induced immunosappression i monitoring and chanccenge[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2016, 02(03): 213-217.

脓毒症相关免疫抑制是脓毒症患者发生院内获得性感染或死亡的重要原因。脓毒症相关免疫抑制在感染早期即可能发生,主要表现为免疫细胞功能下降,抑制性细胞、凋亡比例增加。及时对脓毒症相关免疫抑制的发生进行监测,有助于全面评价患者病情,指导免疫调节治疗,从而改善患者的预后。本文就脓毒症相关免疫抑制监测的研究进展进行综述。

Sepsis-induced immunosuppression is held responsible for higher morbidity and morality of opportunistic bacteria infection in septic patients. Sepsis-induced immunosuppression may exist in early stage of sepsis, with impaired immune function including increasing immunosuppressive cells and cell apoptosis. It is important to monitor immunosuppression during sepsis to guide adjunctive immune therapies. In this review, we will focus on the recent ?ndings in monitoring sepsis-induced immunosuppression.

表1 可应用于临床的免疫检测指标及方法
[1]
Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012[J]. Crit Care Med, 2013, 41(2):580–637.
[2]
Quenot JP, Binquet C, Kara F, et al. The epidemiology of septic shock in French intensive care units: the prospective multicenter cohort EPISS study[J]. Crit Care, 2013,17(2):65.
[3]
Leentjens J, Kox M, Koch RM, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study[J]. Am J Respir Crit Care Med, 2012, 186(9):838–845.
[4]
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients: who die of sepsis and multiple organ failure[J]. JAMA, 2011, 306:2594–2605.
[5]
Venet F, Lukaszewicz AC, Payen D, et al. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies[J]. Current Opinion in Immunology, 2013, 25(4):477–483.
[6]
Torgersen C, Moser P, Luckner G, et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis[J]. Anesth Analg, 2009,108(6):1841–1847.
[7]
Otto GP, Sossdorf M, Claus RA, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate[J]. Crit Care, 2011, 15(4):183.
[8]
Limaye AP, Kirby KA, Rubenfeld GD, et al. Cytomegalovirus reactivation in critically III immunocompetent patients[J]. JAMA, 2008, 300(4):413–422.
[9]
Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial[J]. Am J Respir Crit Care Med., 2009, 180(7):640–648.
[10]
Grimaldi D, Louis S, Pene F, et al. Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock[J]. Intensive Care Med, 2011, 37(9):1438–1446.
[11]
Guisset O, Dilhuydy MS, Thiebaut R, et al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock[J]. Intensive Care Med, 2007, 33(1):148–152.
[12]
Le Tulzo Y, Pangault C, Amiot L, et al. Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock[J]. Am J Respir Crit Care Med, 2004,169(10):1144–1151.
[13]
Tschaikowsky K, Hedwig-Geissing M, Schiele A, et al. Coincidence of proand anti-inflammatory responses in the early phase of severe sepsis: longitudinal study of mononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients[J]. Crit Care Med, 2002, 30(5):1015–1023.
[14]
Sachse C, Prigge M, Cramer G, et al. Association between reduced human leukocyte antigen (HLA)-DR expression on blood monocytes and increased plasma level of interleukin-10 in patients with severe burns[J]. Clin Chem Lab Med, 1999, 37(3):193–198.
[15]
Venet F, Tissot S, Debard AL, et al. Decreased monocyte human leukocyte antigen-DR expression after severe burn injury:correlation with severity and secondary septic shock[J]. Crit Care Med, 2007, 35(8):1910–1917.
[16]
Haveman JW, van den Berg AP, van den Berk JM, et al. Low HLA-DR expression on peripheral blood monocytes predicts bacterial sepsis after liver transplantation: relation with prednisolone intake[J]. Transpl Infect Dis, 1999, 1(3):146–152.
[17]
Monneret G, Lepape A, Voirin N, et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock[J]. Intensive Care Med, 2006, 32(8):1175–1183.
[18]
Pachot A, Monneret G, Voirin N, et al. Longitudinal study of cytokine and immune transcription factor mRNA expression in septic shock[J]. Clin Immunol, 2005, 114(1):61–69.
[19]
Spolarics Z, Siddigi M, Siegel JH, et al. Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients[J]. Crit Care Med, 2003, 31(6):1722–1729.
[20]
Monneret G, Debard AL, Venet F, et al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis[J]. Crit Care Med , 2003, 31(7):2068–2071.
[21]
Sakaguchi S. Naturally rising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol, 2004, 22:531–562.
[22]
MacConmara MP, Maung AA, Fujimi S, et al. Increased CD4+CD25+T regulatory cell activity in trauma patients depresses protective Th1 immunity[J]. Ann Surg,2006, 244(4):514–523.
[23]
Scumpia PO, Delano MJ, Kelly KM, et al. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis[J]. J Immunol, 2006, 177(11):7943–7949.
[24]
Cao C, Ma T, Chai YF, et al. The role of regulatory T cells in immune dysfunction during sepsis. World J Emerg Med. 2015; 6(1):5–9.
[25]
Offner H, Subramanian S, Parker SM, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages[J]. J Immunol., 2006, 176(11):6523–6531.
[26]
Matsushima A, Ogura H, Fujita K, et al. Early activation of gammadelta T lymphocytes in patients with severe systemic inflammatory response syndrome[J]. Shock, 2004, 22(1):11–15.
[27]
De Freitas I, Fernandez-Somoza M, Essenfeld-Sekler E, et al. Serum levels of the apoptosis-associated molecules, tumor necrosis factor-alpha/tumor necrosis factor type-I receptor and Fas/FasL, in sepsis[J]. Chest, 2004, 125(6):2238–2246.
[28]
Papathanassoglou ED, Moynihan JA, McDermott MP, et al. Expression of Fas (CD95) and Fas ligand on peripheral blood mononuclear cells in critical illness and association with multiorgan dysfunction severity and survival[J]. Crit Care Med, 2001, 29(4):709–718.
[29]
Roth G, Moser B, Krenn C, et al. Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance[J]. Biochem Biophys Res Commun, 2003, 308(4):840–846.
[30]
Bilbault P, Lavaux T, Lahlou A. et al. Transient Bcl-2 gene down-expression in circulating mononuclear cells of severe sepsis patients who died despite appropriate intensive care[J]. Intensive Care Med, 2004, 30(3):408–415.
[31]
Bilbault P, Lavaux T, Launoy A, et al. Influence of drotrecogin alpha (activated) infusion on the variation of Bax/Bcl-2 and Bax/Bcl-xl ratios in circulating mononuclear cells:a cohort study in septic shock patients[J]. Crit Care Med, 2007, 35(1):69–75.
[32]
Hoesel LM, Neff TA, Neff SB, et al. Harmful and protective roles of neutrophils in sepsis[J]. Shock, 2005, 24(1):40–47.
[33]
Rimmelé T, Kaynar AM, McLaughlin JN, et al. Leukocyte capture and modulation of cell- mediated immunity during human sepsis: an ex vivo study[J]. Crit Care, 2013, 17(2):59.
[34]
Demaret J, Walencik A, Jacob MC, et al. Inter-Laboratory Assessment of Flow Cytometric Monocyte HLA-DR Expression in Clinical Samples[J]. Cytometry B Clin Cytom, 2013, 84(1):59–62.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[7] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[8] 中国器官移植发展基金会器官移植受者健康管理专家委员会, 中国医师协会器官移植医师分会, 中华医学会器官移植学分会, 国家肝脏移植质控中心. 肝移植受者雷帕霉素靶蛋白抑制剂临床应用中国专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(04): 193-204.
[9] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[10] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[13] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[14] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要