切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2017, Vol. 03 ›› Issue (01) : 33 -39. doi: 10.3877/cma.j.issn.2096-1537.2017.01.008

所属专题: 重症医学 文献

观点

急性肾损伤的生物学标志物能否帮助早期诊断?
唐昊1, 蒋东坡1,()   
  1. 1. 40042 重庆,第三军医大学大坪医院野战外科研究所全军战创伤中心,创伤、烧伤与复合伤国家重点实验室,重症医学科
  • 收稿日期:2017-01-18 出版日期:2017-02-28
  • 通信作者: 蒋东坡
  • 基金资助:
    国家自然科学基金项目(81372027)

Can biomarkers help early diagnosis of acute kidney injury?

Hao Tang1, Dongpo Jiang1,()   

  1. 1. Intensive Care Unit, State Key Laboratory of Trauma, Burn and Combined Injury, Army War Trauma Center of Field Surgery Institute, Daping Hospital, Third Military Medical University, Chongqing 40042, China
  • Received:2017-01-18 Published:2017-02-28
  • Corresponding author: Dongpo Jiang
  • About author:
    Jiang Dongpo, Email:
引用本文:

唐昊, 蒋东坡. 急性肾损伤的生物学标志物能否帮助早期诊断?[J/OL]. 中华重症医学电子杂志, 2017, 03(01): 33-39.

Hao Tang, Dongpo Jiang. Can biomarkers help early diagnosis of acute kidney injury?[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2017, 03(01): 33-39.

目前,尽管有许多关于急性肾损伤(acute kidney injury,AKI)定义和分期的新进展,但是AKI的诊断依然基于尿量和/或血肌酐水平。因此,最近十年的相关研究焦点在于发现和证实肾器质和功能损害的灵敏度、特异度更高的生物学标志物。最佳的生物学标志物能够识别AKI的发生风险,比传统检测更早诊断AKI,并能预测疾病进展风险,如肾替代治疗(renal replacement therapy,RRT)的需求,从而能够改善AKI患者的预后。本文将就AKI生物学标志物的研究现状、用于早期诊断AKI及其临床应用前景进行综述,以期对AKI的早期诊断和有效治疗的选择提供依据。

Despite recent developments in definition and staging of acute kidney injury (AKI), the diagnosis of AKI is still based on oliguria and/or an increase in serum creatinine concentration. Consequently, research in the last decade has focused on the discovery and validation of more specific and sensitive biomarkers of tubular damage and functional impairment. The most advanced biomarkers promise to identify patients at risk of AKI, diagnose AKI earlier than conventional tests, predict the risk of progression, including need for renal replacement therapy (RRT) and improve the prognosis. This review summarizes the important biomarkers identified by previous studies and aims to highlight the advancements that might provide new evidence for early clinical diagnosis and effective therapeutic options.

表1 急性肾损伤早期诊断的主要生物学标志物及其特征
[1]
Ostermann M. Diagnosis of acute kidney injury: Kidney Disease Improving Global Outcomes criteria and beyond[J]. Curr Opin Crit Care, 2014, 20(6): 581–587.
[2]
Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury[J]. Am J Kidney Dis, 2013, 61(5): 649–672.
[3]
Kellum JA, Sileanu FE, Murugan R, et al. Classifying AKI by urine output versus serum creatinine level[J]. J Am Soc Nephrol, 2015, 26(9): 2231–2238.
[4]
Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411–1423.
[5]
Thomas ME, Blaine C, Dawnay A, et al. The definition of acute kidney injury and its use in practice[J]. Kidney Int, 2015, 87(1): 62–73.
[6]
Lehner GF, Forni LG, Joannidis M. Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night[J]. Nephron, 2016, 134(3): 183–190.
[7]
Schrezenmeier EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury- pathophysiological basis and clinical performance[J]. Acta Physiol (Oxf), 2017, 219(3): 554–572.
[8]
Katagiri D, Doi K, Honda K, et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery[J]. Ann Thorac Surg, 2012, 93(2): 577–583.
[9]
Maisel AS, Katz N, Hillege HL, et al. Biomarkers in kidney and heart disease[J]. Nephrol Dial Transplant, 2011, 26(1): 62–74.
[10]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): c179–c184.
[11]
Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury[J]. Clin J Am Soc Nephrol, 2017, 12(1): 149–173.
[12]
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure- definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204–R12.
[13]
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31.
[14]
Schiffl H, Lang SM. Update on biomarkers of acute kidney injury: moving closer to clinical impact[J]. Mol Diagn Ther, 2012, 16(4): 199–207.
[15]
Bastin A J, Ostermann M, Slack A J, et al. Acute kidney injury after cardiac surgery according to Risk/Injury/Failure/Loss/End-stage, Acute Kidney Injury Network, and Kidney Disease: Improving Global Outcomes classifications[J]. Journal of Critical Care, 2013, 28(4): 389–396.
[16]
Chawla LS, Davison DL, Brasha-Mitchell E, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury[J]. Crit Care, 2013, 17(5): R207.
[17]
Joannidis M, Metnitz B, Bauer P, et al. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database[J]. Intensive Care Med, 2009, 35(10): 1692–1702.
[18]
Dennen P, Douglas IS, Anderson R. Acute kidney injury in the intensive care unit: an update and primer for the intensivist[J]. Crit Care Med, 2010, 38(1): 261–275.
[19]
Kellum JA, Devarajan P. What can we expect from biomarkers for acute kidney injury[J]. Biomark Med, 2014, 8(10): 1239–1245.
[20]
Koyner JL, Davison DL, Brasha-Mitchell E, et al. Furosemide stress test and biomarkers for the prediction of AKI severity[J]. J Am Soc Nephrol, 2015, 26(8): 2023–2031.
[21]
Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes[J]. Crit Care Med, 2011, 39(12): 2665–2671.
[22]
Ling W, Zhaohui N, Ben H, et al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography[J]. Nephron Clinical Practice, 2008, 108(3): c176–c181.
[23]
Filiopoulos V, Biblaki D, Vlassopoulos D. Neutrophil gelatinase-associated lipocalin (NGAL): a promising biomarker of contrast-induced nephropathy after computed tomography[J]. Ren Fail, 2014, 36(6): 979–986.
[24]
Luo QH, Chen ML, Chen ZL, et al. Evaluation of KIM-1 and NGAL as early indicators for assessment of gentamycin-induced nephrotoxicity in vivo and in vitro[J]. Kidney Blood Press Res, 2016, 41(6): 911–918.
[25]
Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study[J]. Clin J Am Soc Nephrol, 2008, 3(3): 665–673.
[26]
Hewitt SM, Dear J, Star RA. Discovery of protein biomarkers for renal diseases[J]. J Am Soc Nephrol, 2004, 15(7): 1677–1689.
[27]
Siew ED, Matheny ME. Choice of reference serum creatinine in defining acute kidney injury[J]. Nephron, 2015, 131(2): 107–112.
[28]
Vanmassenhove J, Glorieux G, Hoste E, et al. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis[J]. Critical Care, 2013, 17(5): R234.
[29]
Huang Y, Don-Wauchope AC. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review[J]. Inflamm Allergy Drug Targets, 2011, 10(4): 260–271.
[30]
Ramesh G, Krawczeski CD, Woo JG, et al. Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery[J]. Clin J Am Soc Nephrol, 2010, 5(3): 395–401.
[31]
Munshi R, Johnson A, Siew ED, et al. MCP-1 gene activation marks acute kidney injury[J]. J Am Soc Nephrol, 2011, 22(1): 165–175.
[32]
Doi K, Noiri E, Sugaya T. Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care[J]. Curr Opin Crit Care, 2010, 16(6): 545–549.
[33]
Krawczeski CD, Goldstein SL, Woo JG, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass[J]. J Am Coll Cardiol, 2011, 58(22): 2301–2309.
[34]
Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities[J]. Sci Signal, 2008, 1(27): re6.
[35]
Erdener D, Aksu K, Biçer I, et al. Urinary N-acetyl-beta-D-glucosaminidase (NAG) in lupus nephritis and rheumatoid arthritis[J]. J Clin Lab Anal, 2005, 19(4): 172–176.
[36]
Brown JR, Hisey WM, Marshall EJ, et al. Acute kidney injury severity and long-term readmission and mortality after cardiac surgery[J]. Ann Thorac Surg, 2016, 102(5): 1482–1489.
[37]
Gilquin B, Louwagie M, Jaquinod M, et al. Multiplex and accurate quantification of acute kidney injury biomarker candidates in urine using Protein Standard Absolute Quantification (PSAQ) and targeted proteomics[J]. Talanta, 2017, 164: 77–84.
[38]
Kadioglu T, Uzunlulu M, Yigit Kaya S, et al. Urinary kidney injury molecule-1 levels as a marker of early kidney injury in hypertensive patients[J]. Italian J Urol Nephrol, 2016, 68(5): 456–461.
[39]
Schetz M, Gunst J, Van den Berghe G. The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU[J]. Intensive Care Med, 2014, 40(11): 1709–1717.
[40]
Zhou D, Tan R J, Lin L, et al. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury[J]. Kidney Int, 2013, 84(3): 509–520.
[41]
Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells[J]. J Clin Invest, 2008, 118(5): 1657–1668.
[42]
Groesbeck D, Kottgen A, Parekh R, et al. Age, gender, and race effects on cystatin C levels in US adolescents[J]. Clin J Am Soc Nephrol, 2008, 3(6): 1777–1785.
[43]
Parikh C R, Mishra J, Thiessen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery[J]. Kidney Int, 2006, 70(1): 199–203.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[3] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[7] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[8] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[9] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[10] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[11] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[12] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[13] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[14] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
[15] 朱旦华, 卢放根. 以腹水为主要特征的Castleman病16例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 462-473.
阅读次数
全文


摘要