切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2017, Vol. 03 ›› Issue (01) : 33 -39. doi: 10.3877/cma.j.issn.2096-1537.2017.01.008

所属专题: 重症医学 文献

观点

急性肾损伤的生物学标志物能否帮助早期诊断?
唐昊1, 蒋东坡1,()   
  1. 1. 40042 重庆,第三军医大学大坪医院野战外科研究所全军战创伤中心,创伤、烧伤与复合伤国家重点实验室,重症医学科
  • 收稿日期:2017-01-18 出版日期:2017-02-28
  • 通信作者: 蒋东坡
  • 基金资助:
    国家自然科学基金项目(81372027)

Can biomarkers help early diagnosis of acute kidney injury?

Hao Tang1, Dongpo Jiang1,()   

  1. 1. Intensive Care Unit, State Key Laboratory of Trauma, Burn and Combined Injury, Army War Trauma Center of Field Surgery Institute, Daping Hospital, Third Military Medical University, Chongqing 40042, China
  • Received:2017-01-18 Published:2017-02-28
  • Corresponding author: Dongpo Jiang
  • About author:
    Jiang Dongpo, Email:
引用本文:

唐昊, 蒋东坡. 急性肾损伤的生物学标志物能否帮助早期诊断?[J]. 中华重症医学电子杂志, 2017, 03(01): 33-39.

Hao Tang, Dongpo Jiang. Can biomarkers help early diagnosis of acute kidney injury?[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2017, 03(01): 33-39.

目前,尽管有许多关于急性肾损伤(acute kidney injury,AKI)定义和分期的新进展,但是AKI的诊断依然基于尿量和/或血肌酐水平。因此,最近十年的相关研究焦点在于发现和证实肾器质和功能损害的灵敏度、特异度更高的生物学标志物。最佳的生物学标志物能够识别AKI的发生风险,比传统检测更早诊断AKI,并能预测疾病进展风险,如肾替代治疗(renal replacement therapy,RRT)的需求,从而能够改善AKI患者的预后。本文将就AKI生物学标志物的研究现状、用于早期诊断AKI及其临床应用前景进行综述,以期对AKI的早期诊断和有效治疗的选择提供依据。

Despite recent developments in definition and staging of acute kidney injury (AKI), the diagnosis of AKI is still based on oliguria and/or an increase in serum creatinine concentration. Consequently, research in the last decade has focused on the discovery and validation of more specific and sensitive biomarkers of tubular damage and functional impairment. The most advanced biomarkers promise to identify patients at risk of AKI, diagnose AKI earlier than conventional tests, predict the risk of progression, including need for renal replacement therapy (RRT) and improve the prognosis. This review summarizes the important biomarkers identified by previous studies and aims to highlight the advancements that might provide new evidence for early clinical diagnosis and effective therapeutic options.

表1 急性肾损伤早期诊断的主要生物学标志物及其特征
[1]
Ostermann M. Diagnosis of acute kidney injury: Kidney Disease Improving Global Outcomes criteria and beyond[J]. Curr Opin Crit Care, 2014, 20(6): 581–587.
[2]
Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury[J]. Am J Kidney Dis, 2013, 61(5): 649–672.
[3]
Kellum JA, Sileanu FE, Murugan R, et al. Classifying AKI by urine output versus serum creatinine level[J]. J Am Soc Nephrol, 2015, 26(9): 2231–2238.
[4]
Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411–1423.
[5]
Thomas ME, Blaine C, Dawnay A, et al. The definition of acute kidney injury and its use in practice[J]. Kidney Int, 2015, 87(1): 62–73.
[6]
Lehner GF, Forni LG, Joannidis M. Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night[J]. Nephron, 2016, 134(3): 183–190.
[7]
Schrezenmeier EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury- pathophysiological basis and clinical performance[J]. Acta Physiol (Oxf), 2017, 219(3): 554–572.
[8]
Katagiri D, Doi K, Honda K, et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery[J]. Ann Thorac Surg, 2012, 93(2): 577–583.
[9]
Maisel AS, Katz N, Hillege HL, et al. Biomarkers in kidney and heart disease[J]. Nephrol Dial Transplant, 2011, 26(1): 62–74.
[10]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): c179–c184.
[11]
Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury[J]. Clin J Am Soc Nephrol, 2017, 12(1): 149–173.
[12]
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure- definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204–R12.
[13]
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31.
[14]
Schiffl H, Lang SM. Update on biomarkers of acute kidney injury: moving closer to clinical impact[J]. Mol Diagn Ther, 2012, 16(4): 199–207.
[15]
Bastin A J, Ostermann M, Slack A J, et al. Acute kidney injury after cardiac surgery according to Risk/Injury/Failure/Loss/End-stage, Acute Kidney Injury Network, and Kidney Disease: Improving Global Outcomes classifications[J]. Journal of Critical Care, 2013, 28(4): 389–396.
[16]
Chawla LS, Davison DL, Brasha-Mitchell E, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury[J]. Crit Care, 2013, 17(5): R207.
[17]
Joannidis M, Metnitz B, Bauer P, et al. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database[J]. Intensive Care Med, 2009, 35(10): 1692–1702.
[18]
Dennen P, Douglas IS, Anderson R. Acute kidney injury in the intensive care unit: an update and primer for the intensivist[J]. Crit Care Med, 2010, 38(1): 261–275.
[19]
Kellum JA, Devarajan P. What can we expect from biomarkers for acute kidney injury[J]. Biomark Med, 2014, 8(10): 1239–1245.
[20]
Koyner JL, Davison DL, Brasha-Mitchell E, et al. Furosemide stress test and biomarkers for the prediction of AKI severity[J]. J Am Soc Nephrol, 2015, 26(8): 2023–2031.
[21]
Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes[J]. Crit Care Med, 2011, 39(12): 2665–2671.
[22]
Ling W, Zhaohui N, Ben H, et al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography[J]. Nephron Clinical Practice, 2008, 108(3): c176–c181.
[23]
Filiopoulos V, Biblaki D, Vlassopoulos D. Neutrophil gelatinase-associated lipocalin (NGAL): a promising biomarker of contrast-induced nephropathy after computed tomography[J]. Ren Fail, 2014, 36(6): 979–986.
[24]
Luo QH, Chen ML, Chen ZL, et al. Evaluation of KIM-1 and NGAL as early indicators for assessment of gentamycin-induced nephrotoxicity in vivo and in vitro[J]. Kidney Blood Press Res, 2016, 41(6): 911–918.
[25]
Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study[J]. Clin J Am Soc Nephrol, 2008, 3(3): 665–673.
[26]
Hewitt SM, Dear J, Star RA. Discovery of protein biomarkers for renal diseases[J]. J Am Soc Nephrol, 2004, 15(7): 1677–1689.
[27]
Siew ED, Matheny ME. Choice of reference serum creatinine in defining acute kidney injury[J]. Nephron, 2015, 131(2): 107–112.
[28]
Vanmassenhove J, Glorieux G, Hoste E, et al. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis[J]. Critical Care, 2013, 17(5): R234.
[29]
Huang Y, Don-Wauchope AC. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review[J]. Inflamm Allergy Drug Targets, 2011, 10(4): 260–271.
[30]
Ramesh G, Krawczeski CD, Woo JG, et al. Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery[J]. Clin J Am Soc Nephrol, 2010, 5(3): 395–401.
[31]
Munshi R, Johnson A, Siew ED, et al. MCP-1 gene activation marks acute kidney injury[J]. J Am Soc Nephrol, 2011, 22(1): 165–175.
[32]
Doi K, Noiri E, Sugaya T. Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care[J]. Curr Opin Crit Care, 2010, 16(6): 545–549.
[33]
Krawczeski CD, Goldstein SL, Woo JG, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass[J]. J Am Coll Cardiol, 2011, 58(22): 2301–2309.
[34]
Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities[J]. Sci Signal, 2008, 1(27): re6.
[35]
Erdener D, Aksu K, Biçer I, et al. Urinary N-acetyl-beta-D-glucosaminidase (NAG) in lupus nephritis and rheumatoid arthritis[J]. J Clin Lab Anal, 2005, 19(4): 172–176.
[36]
Brown JR, Hisey WM, Marshall EJ, et al. Acute kidney injury severity and long-term readmission and mortality after cardiac surgery[J]. Ann Thorac Surg, 2016, 102(5): 1482–1489.
[37]
Gilquin B, Louwagie M, Jaquinod M, et al. Multiplex and accurate quantification of acute kidney injury biomarker candidates in urine using Protein Standard Absolute Quantification (PSAQ) and targeted proteomics[J]. Talanta, 2017, 164: 77–84.
[38]
Kadioglu T, Uzunlulu M, Yigit Kaya S, et al. Urinary kidney injury molecule-1 levels as a marker of early kidney injury in hypertensive patients[J]. Italian J Urol Nephrol, 2016, 68(5): 456–461.
[39]
Schetz M, Gunst J, Van den Berghe G. The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU[J]. Intensive Care Med, 2014, 40(11): 1709–1717.
[40]
Zhou D, Tan R J, Lin L, et al. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury[J]. Kidney Int, 2013, 84(3): 509–520.
[41]
Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells[J]. J Clin Invest, 2008, 118(5): 1657–1668.
[42]
Groesbeck D, Kottgen A, Parekh R, et al. Age, gender, and race effects on cystatin C levels in US adolescents[J]. Clin J Am Soc Nephrol, 2008, 3(6): 1777–1785.
[43]
Parikh C R, Mishra J, Thiessen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery[J]. Kidney Int, 2006, 70(1): 199–203.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[3] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[4] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[5] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[6] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[7] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[8] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[9] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[10] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[11] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[12] 杨红杰, 张智春, 孙轶. 直肠癌淋巴结转移诊断研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 512-518.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要