切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2017, Vol. 03 ›› Issue (01) : 40 -45. doi: 10.3877/cma.j.issn.2096-1537.2017.01.009

所属专题: 重症医学 文献

观点

急性肾损伤的生物学标志物能否帮助早期诊断?
潘鹏飞1, 于湘友1,()   
  1. 1. 830054 乌鲁木齐,新疆医科大学第一附属医院重症医学科
  • 收稿日期:2017-01-18 出版日期:2017-02-28
  • 通信作者: 于湘友

Are biomarkers helpful in early diagnosis of acute kidney injury?

Pengfei Pan1, Xiangyou Yu1,()   

  1. 1. Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
  • Received:2017-01-18 Published:2017-02-28
  • Corresponding author: Xiangyou Yu
  • About author:
    Yu Xiangyou, Email:
引用本文:

潘鹏飞, 于湘友. 急性肾损伤的生物学标志物能否帮助早期诊断?[J/OL]. 中华重症医学电子杂志, 2017, 03(01): 40-45.

Pengfei Pan, Xiangyou Yu. Are biomarkers helpful in early diagnosis of acute kidney injury?[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2017, 03(01): 40-45.

急性肾损伤(acute kidney injury,AKI)是临床常见的危重症,发病率和导致的患者病死率均较高。早期诊断AKI并及时予以干预治疗,有助于改善患者的预后。目前诊断AKI的主要依据为血清肌酐(serum creatinine,Scr)值升高和尿量改变。然而,Scr值和尿量不能早期反映AKI病情的变化。一些新型生物学标志物可更早预测AKI的发生。笔者拟就早期诊断AKI生物学标志物的研究进展进行阐述。

Acute kidney injury (AKI) is a common clinical condition which induces increased morbidity and mortality. Timely diagnosis and appropriate therapy of AKI can improve outcome. Current diagnosis of AKI is still based on the presence of oliguria and a gradual increase of serum creatinine (Scr) concentration which can not reflect the condition of AKI early. Several novel biomarkers could potentially be useful to predict AKI early in the clinical setting. In this review, we discuss about the clinical evidence of currently available biomarkers in early diagnosis of AKI.

[1]
Yang L, Xing G, Wang L, et al. Acute kidney injury in China: a cross-sectional survey[J]. Lancet, 2015, 386(10002): 1465–1471.
[2]
Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411–1423.
[3]
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204–R212.
[4]
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31.
[5]
Kidney Disease: Improving Global Outcomes (KDIGO), Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury[J]. Kidney Int Suppl, 2012, 2(1): 1–138.
[6]
Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup[J]. Crit Care, 2016, 20(1): 299.
[7]
De Rosa S, Samoni S, Ronco C. Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care[J]. Crit Care, 2016, 20(1): 69.
[8]
Moore E, Tobin A, Reid D, et al. The impact of fluid balance on the detection, classification and outcome of acute kidney injury after cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2015, 29(5): 1229–1235.
[9]
Lehner GF, Forni LG, Joannidis M. Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night?[J]. Nephron, 2016, 134(3): 183–190.
[10]
Md Ralib A, Pickering JW, Shaw GM, et al. The urine output definition of acute kidney injury is too liberal[J]. Crit Care, 2013, 17(3): R112.
[11]
Ostermann M. Diagnosis of acute kidney injury: Kidney Disease Improving Global Outcomes criteria and beyond [J]. Curr Opin Crit Care, 2014, 20(6): 581–587.
[12]
Fliser D, Laville M, Covic A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy[J]. Nephrol Dial Transplant, 2012, 27(12): 4263–4272.
[13]
Lameire N, Vanmassenhove J, Van Biesen W, et al. The cell cycle biomarkers: promising research, but do not oversell them[J]. Clin Kidney J, 2016, 9(3): 353–358.
[14]
Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers[J]. Nephrol Dial Transplant, 2014, 29(7): 1301–1311.
[15]
Zhou F, Luo Q, Wang L, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis[J]. Eur J Cardiothorac Surg, 2016, 49(3): 746–755.
[16]
Zhang A, Cai Y, Wang PF, et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis[J]. Crit Care, 2016, 20: 41.
[17]
Sen S, Godwin ZR, Palmieri T, et al. Whole blood neutrophil gelatinase-associated lipocalin predicts acute kidney injury in burn patients[J]. J Surg Res, 2015, 196(2): 382–387.
[18]
Quintavalle C, Anselmi CV, De Micco F, et al. Neutrophil gelatinase-associated lipocalin and contrast-induced acute kidney injury[J]. Circ Cardiovasc Interv, 2015, 8(9): e002673.
[19]
Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis[J]. J Nephrol, 2015, 28(1): 7–16.
[20]
Nisula S, Yang R, Poukkanen M, et al. Predictive value of urine interleukin-18 in the evolution and outcome of acute kidney injury in critically ill adult patients[J]. Br J Anaesth, 2015, 114(3): 460–468.
[21]
Li W, Yu Y, He H, et al. Urinary kidney injury molecule-1 as an early indicator to predict contrast-induced acute kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention[J]. Biomed Rep, 2015, 3(4): 509–512.
[22]
Sabbisetti VS, Waikar SS, Antoine DJ, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes[J]. J Am Soc Nephrol, 2014, 25(10): 2177–2186.
[23]
Susantitaphong P, Siribamrungwong M, Doi K, et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis[J]. Am J Kidney Dis, 2013, 61(3): 430–439.
[24]
Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers′ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis[J]. Am J Kidney Dis, 2015, 66(6): 993–1005.
[25]
Petrovic S, Bogavac-Stanojevic N, Lakic D, et al. Cost-effectiveness analysis of acute kidney injury biomarkers in pediatric cardiac surgery[J]. Biochem Med (Zagreb), 2015, 25(2): 262–271.
[26]
Liu L, Xie S, Liao X, et al. Netrin-1 pretreatment protects rat kidney against ischemia/reperfusion injury via suppression of oxidative stress and neuropeptide Y expression[J]. J Biochem Mol Toxicol, 2013, 27(4): 231–236.
[27]
Wohlfhrtova M, Brabcova, Zelezny F, et al. Tubular atrophy and low netrin-1 gene expression are associated with delayed kidney allograft funtion[J]. Transplantation, 2014, 97(2): 176–183.
[28]
Lombi F, Muryan A, Canzonieri R, et al. Biomarkers in acute kidney injury: evidence or paradigm?[J]. Nefrologia, 2016, 36(4): 339–346.
[29]
Jiang C, Qi C, Sun K, et al. Diagnostic value of N-acetyl-β-D-glucosaminidase for the early prediction of acute kidney injury after percutaneous nephrolithotripsy[J]. Exp Ther Med, 2013, 5(1): 197–200.
[30]
Benzer M, Alpay H, Baykan Ö, et al. Serum NGAL, cystatin C and urinary NAG measurements for early diagnosis of contrast-induced nephropathy in children [J]. Ren Fail, 2016, 38(1): 27–34.
[31]
Andreucci M, Faga T, Riccio E, et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury[J]. Int J Nephrol Renovasc Dis, 2016, 9: 205–221.
[32]
Zhang Z, Lu B, Sheng X, et al. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis[J]. Am J Kidney Dis, 2011, 58(3): 356–365.
[33]
Chen S, Shi JS, Yibulayin X, et al. Cystatin C is a moderate predictor of acute kidney injury in the early stage of traumatic hemorrhagic shock[J]. Exp Ther Med, 2015, 10(1): 237–240.
[34]
Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25.
[35]
Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication[J]. Am J Respir Crit Care Med, 2014, 189(8): 932–939.
[36]
Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, et al. Urinary [TIMP-2]*·[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery[J]. Ann Intensive Care, 2015, 5(1): 50.
[37]
Kimmel M, Shi J, Wasser C, et al. Urinary [TIMP-2]·[IGFBP7]-novel biomarkers to predict acute kidney injury[J]. Am J Nephrol, 2016, 43(5): 375–382.
[38]
Bell M, Larsson A, Venge P, et al. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury[J]. Dis Markers, 2015, 2015: 158658.
[39]
Aguado-Fraile E, Ramos E, Conde E, et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury[J]. PLoS One, 2015, 10(6): e0127175.
[40]
Sun SQ, Zhang T, Ding D, et al. Circulating microRNA-188, -30a, and -30e as early biomarkers for contrast-induced acute kidney injury[J]. J Am Heart Assoc, 2016, 5(8): e004138.
[41]
Liu X, Guan Y, Xu S, et al. Early predictors of acute kidney injury: a narrative review[J]. Kidney Blood Press Res, 2016, 41(5): 680–700.
[1] 何淳诺, 田志敏, 李焕玺, 吴昊越, 庄凯鹏, 周胜虎, 张浩强. 小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[2] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[5] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[6] 赵静, 范晔, 游雅婷, 陈慧, 王静, 张静. 虚拟支气管镜导航联合径向超声支气管镜在周围型肺癌中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 524-528.
[7] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[11] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[14] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?