切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2017, Vol. 03 ›› Issue (01) : 40 -45. doi: 10.3877/cma.j.issn.2096-1537.2017.01.009

所属专题: 重症医学 文献

观点

急性肾损伤的生物学标志物能否帮助早期诊断?
潘鹏飞1, 于湘友1,()   
  1. 1. 830054 乌鲁木齐,新疆医科大学第一附属医院重症医学科
  • 收稿日期:2017-01-18 出版日期:2017-02-28
  • 通信作者: 于湘友

Are biomarkers helpful in early diagnosis of acute kidney injury?

Pengfei Pan1, Xiangyou Yu1,()   

  1. 1. Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
  • Received:2017-01-18 Published:2017-02-28
  • Corresponding author: Xiangyou Yu
  • About author:
    Yu Xiangyou, Email:
引用本文:

潘鹏飞, 于湘友. 急性肾损伤的生物学标志物能否帮助早期诊断?[J]. 中华重症医学电子杂志, 2017, 03(01): 40-45.

Pengfei Pan, Xiangyou Yu. Are biomarkers helpful in early diagnosis of acute kidney injury?[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2017, 03(01): 40-45.

急性肾损伤(acute kidney injury,AKI)是临床常见的危重症,发病率和导致的患者病死率均较高。早期诊断AKI并及时予以干预治疗,有助于改善患者的预后。目前诊断AKI的主要依据为血清肌酐(serum creatinine,Scr)值升高和尿量改变。然而,Scr值和尿量不能早期反映AKI病情的变化。一些新型生物学标志物可更早预测AKI的发生。笔者拟就早期诊断AKI生物学标志物的研究进展进行阐述。

Acute kidney injury (AKI) is a common clinical condition which induces increased morbidity and mortality. Timely diagnosis and appropriate therapy of AKI can improve outcome. Current diagnosis of AKI is still based on the presence of oliguria and a gradual increase of serum creatinine (Scr) concentration which can not reflect the condition of AKI early. Several novel biomarkers could potentially be useful to predict AKI early in the clinical setting. In this review, we discuss about the clinical evidence of currently available biomarkers in early diagnosis of AKI.

[1]
Yang L, Xing G, Wang L, et al. Acute kidney injury in China: a cross-sectional survey[J]. Lancet, 2015, 386(10002): 1465–1471.
[2]
Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411–1423.
[3]
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204–R212.
[4]
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31.
[5]
Kidney Disease: Improving Global Outcomes (KDIGO), Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury[J]. Kidney Int Suppl, 2012, 2(1): 1–138.
[6]
Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup[J]. Crit Care, 2016, 20(1): 299.
[7]
De Rosa S, Samoni S, Ronco C. Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care[J]. Crit Care, 2016, 20(1): 69.
[8]
Moore E, Tobin A, Reid D, et al. The impact of fluid balance on the detection, classification and outcome of acute kidney injury after cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2015, 29(5): 1229–1235.
[9]
Lehner GF, Forni LG, Joannidis M. Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night?[J]. Nephron, 2016, 134(3): 183–190.
[10]
Md Ralib A, Pickering JW, Shaw GM, et al. The urine output definition of acute kidney injury is too liberal[J]. Crit Care, 2013, 17(3): R112.
[11]
Ostermann M. Diagnosis of acute kidney injury: Kidney Disease Improving Global Outcomes criteria and beyond [J]. Curr Opin Crit Care, 2014, 20(6): 581–587.
[12]
Fliser D, Laville M, Covic A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy[J]. Nephrol Dial Transplant, 2012, 27(12): 4263–4272.
[13]
Lameire N, Vanmassenhove J, Van Biesen W, et al. The cell cycle biomarkers: promising research, but do not oversell them[J]. Clin Kidney J, 2016, 9(3): 353–358.
[14]
Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers[J]. Nephrol Dial Transplant, 2014, 29(7): 1301–1311.
[15]
Zhou F, Luo Q, Wang L, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis[J]. Eur J Cardiothorac Surg, 2016, 49(3): 746–755.
[16]
Zhang A, Cai Y, Wang PF, et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis[J]. Crit Care, 2016, 20: 41.
[17]
Sen S, Godwin ZR, Palmieri T, et al. Whole blood neutrophil gelatinase-associated lipocalin predicts acute kidney injury in burn patients[J]. J Surg Res, 2015, 196(2): 382–387.
[18]
Quintavalle C, Anselmi CV, De Micco F, et al. Neutrophil gelatinase-associated lipocalin and contrast-induced acute kidney injury[J]. Circ Cardiovasc Interv, 2015, 8(9): e002673.
[19]
Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis[J]. J Nephrol, 2015, 28(1): 7–16.
[20]
Nisula S, Yang R, Poukkanen M, et al. Predictive value of urine interleukin-18 in the evolution and outcome of acute kidney injury in critically ill adult patients[J]. Br J Anaesth, 2015, 114(3): 460–468.
[21]
Li W, Yu Y, He H, et al. Urinary kidney injury molecule-1 as an early indicator to predict contrast-induced acute kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention[J]. Biomed Rep, 2015, 3(4): 509–512.
[22]
Sabbisetti VS, Waikar SS, Antoine DJ, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes[J]. J Am Soc Nephrol, 2014, 25(10): 2177–2186.
[23]
Susantitaphong P, Siribamrungwong M, Doi K, et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis[J]. Am J Kidney Dis, 2013, 61(3): 430–439.
[24]
Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers′ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis[J]. Am J Kidney Dis, 2015, 66(6): 993–1005.
[25]
Petrovic S, Bogavac-Stanojevic N, Lakic D, et al. Cost-effectiveness analysis of acute kidney injury biomarkers in pediatric cardiac surgery[J]. Biochem Med (Zagreb), 2015, 25(2): 262–271.
[26]
Liu L, Xie S, Liao X, et al. Netrin-1 pretreatment protects rat kidney against ischemia/reperfusion injury via suppression of oxidative stress and neuropeptide Y expression[J]. J Biochem Mol Toxicol, 2013, 27(4): 231–236.
[27]
Wohlfhrtova M, Brabcova, Zelezny F, et al. Tubular atrophy and low netrin-1 gene expression are associated with delayed kidney allograft funtion[J]. Transplantation, 2014, 97(2): 176–183.
[28]
Lombi F, Muryan A, Canzonieri R, et al. Biomarkers in acute kidney injury: evidence or paradigm?[J]. Nefrologia, 2016, 36(4): 339–346.
[29]
Jiang C, Qi C, Sun K, et al. Diagnostic value of N-acetyl-β-D-glucosaminidase for the early prediction of acute kidney injury after percutaneous nephrolithotripsy[J]. Exp Ther Med, 2013, 5(1): 197–200.
[30]
Benzer M, Alpay H, Baykan Ö, et al. Serum NGAL, cystatin C and urinary NAG measurements for early diagnosis of contrast-induced nephropathy in children [J]. Ren Fail, 2016, 38(1): 27–34.
[31]
Andreucci M, Faga T, Riccio E, et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury[J]. Int J Nephrol Renovasc Dis, 2016, 9: 205–221.
[32]
Zhang Z, Lu B, Sheng X, et al. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis[J]. Am J Kidney Dis, 2011, 58(3): 356–365.
[33]
Chen S, Shi JS, Yibulayin X, et al. Cystatin C is a moderate predictor of acute kidney injury in the early stage of traumatic hemorrhagic shock[J]. Exp Ther Med, 2015, 10(1): 237–240.
[34]
Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25.
[35]
Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication[J]. Am J Respir Crit Care Med, 2014, 189(8): 932–939.
[36]
Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, et al. Urinary [TIMP-2]*·[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery[J]. Ann Intensive Care, 2015, 5(1): 50.
[37]
Kimmel M, Shi J, Wasser C, et al. Urinary [TIMP-2]·[IGFBP7]-novel biomarkers to predict acute kidney injury[J]. Am J Nephrol, 2016, 43(5): 375–382.
[38]
Bell M, Larsson A, Venge P, et al. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury[J]. Dis Markers, 2015, 2015: 158658.
[39]
Aguado-Fraile E, Ramos E, Conde E, et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury[J]. PLoS One, 2015, 10(6): e0127175.
[40]
Sun SQ, Zhang T, Ding D, et al. Circulating microRNA-188, -30a, and -30e as early biomarkers for contrast-induced acute kidney injury[J]. J Am Heart Assoc, 2016, 5(8): e004138.
[41]
Liu X, Guan Y, Xu S, et al. Early predictors of acute kidney injury: a narrative review[J]. Kidney Blood Press Res, 2016, 41(5): 680–700.
[1] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[4] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[5] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[6] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[7] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[8] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[9] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[10] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要