切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2017, Vol. 03 ›› Issue (01) : 60 -64. doi: 10.3877/cma.j.issn.2096-1537.2017.01.013

所属专题: 重症医学 文献

专题笔谈

连续肾脏替代治疗时抗菌药物的剂量调整
王春耀1, 翁利1,()   
  1. 1. 100730 北京协和医院内科ICU
  • 收稿日期:2016-12-26 出版日期:2017-02-28
  • 通信作者: 翁利

Dosing adjustment of antibiotics in continuous renal replacement therapy

Chunyao Wang1, Li Weng1,()   

  1. 1. Intensive Care Unit of Internal Medicine, Peking Union Medical College Hospital, Beijing 100730, China
  • Received:2016-12-26 Published:2017-02-28
  • Corresponding author: Li Weng
  • About author:
    Weng Li, Email:
引用本文:

王春耀, 翁利. 连续肾脏替代治疗时抗菌药物的剂量调整[J]. 中华重症医学电子杂志, 2017, 03(01): 60-64.

Chunyao Wang, Li Weng. Dosing adjustment of antibiotics in continuous renal replacement therapy[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2017, 03(01): 60-64.

急性肾损伤(acute kidney injury,AKI)是严重全身性感染患者的常见临床并发症,其中6% AKI患者需要行连续肾脏替代治疗(continuous renal replacement therapy,CRRT)。AKI本身可影响抗菌药物的药代动力学,而CRRT则使该问题进一步复杂化。根据药代动力学特点,选择抗菌药物类型和剂量,是治疗该病患者的关键。

Acute kidney injury (AKI) is one of the common clinical manifestations in severe sepsis patients, among which 6% patients may need continuous renal replacement therapy (CRRT). CRRT as well as AKI will affect the pharmacokinetics of antibiotics and eventually affect their clinical effect. The key of antibiotics utilization among those AKI patients is the choice of antibiotics typeand dose in the concern of the special pharmacokinetics.

表1 不同模式CRRT的溶质清除公式
表2 不同药代动力学类型抗菌药物的理想给药方案
表3 CRRT时部分抗菌药物的药代动力学特点及推荐剂量
[1]
Sakhuja A, Kumar G, Gupta S, et al. Acute kidney injury requiring dialysis in severe sepsis[J]. Am J Respir Crit Care Med, 2015, 192(8): 951–957.
[2]
Tam VH, Schilling AN, Neshat S, et al. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2005, 49(12): 4920–4927.
[3]
Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men[J]. Clin Infect Dis, 1998, 26(1): 1–10.
[4]
Louie A, Kaw P, Liu W, et al. Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection[J]. Antimicrob Agents Chemother, 2001, 45(3): 845–851.
[5]
Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists[J]. Clin Infect Dis, 2009, 49(3): 325–327.
[6]
Stein GE, Craig WA. Tigecycline: a critical analysis[J]. Clin Infect Dis, 2006, 43(4): 518–524.
[7]
Roberts DM. The relevance of drug clearance to antibiotic dosing in critically ill patients[J]. Curr Pharm Biotechnol, 2011, 12(12): 2002–2014.
[8]
Blot S, Lipman J, Roberts DM, et al. The influence of acute kidney injury on antimicrobial dosing in critically ill patients: are dose reductions always necessary[J]. Diagn Microbiol Infect Dis, 2014, 79(1): 77–84.
[9]
Choi G, Gomersall CD, Tian Q, et al. Principles of antibacterial dosing in continuous renal replacement therapy[J]. Crit Care Med, 2009, 37(7): 2268–2282.
[10]
Wong WT, Choi G, Gomersall CD, et al. To increase or decrease dosage of antimicrobials in septic patients during continuous renal replacement therapy: the eternal doubt[J]. Curr Opin Pharmacol, 2015, 24(1): 68–78.
[11]
Mueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treatedwith continuous hemofiltration[J]. Am J Kidney Dis, 1993, 21(2): 172–179.
[12]
Ververs TF, van Dijk A, Vinks SA, et al. Pharmacokinetics and dosing regimen ofmeropenem in critically ill patients receiving continuous venovenoushemofiltration[J]. Crit Care Med, 2000, 28(10): 3412–3416.
[13]
Longo C, Bartlett G, Macgibbon B, et al. The effect of obesity on antibiotic treatmentfailure: a historical cohort study[J]. Pharmacoepidemiol Drug, 2013, 22(9): 970–976.
[14]
Kielstein JT, Burkhardt O. Dosing of antibiotics in critically illpatients undergoing renal replacement therapy[J]. Curr Pharm Biotechnol, 2011, 12(12): 2015–2019.
[15]
Kielstein JT, David S. Pro: renal replacement trauma or Paracelsus 2.0[J]. Nephrol Dial Transplant, 2013, 28(11): 2728–2733.
[16]
Li AMMY, Gomersall CD, Choi G, et al. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data[J]. J Antimicrob Chemother, 2009, 64(5): 929–937.
[17]
Valtonen M, Tiula E, Takkunem O, et al. Elimination of piperacillin/tazobactam combination during continuous venovenous haemofiltration and haemodialfiltration in patients with acute renal failure[J]. J Antimicrob Chemother, 2001, 48(6): 881–885.
[18]
Mueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration[J]. Am J Kidney Dis, 1993, 21(2): 172–179.
[19]
Dulhunty JM, Roberts JA, Davis JS, et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial[J]. Clin Infect Dis, 2013, 56(2): 236–244.
[20]
Isla A, Gascon AR, Maynar J, et al. In vitro AN69 and poly sulphone membrane permeability to ceftazidime and in vivo pharmacokinetics during continuous renal replacement therapies[J]. Chemotherapy, 2007, 53(3): 194–201.
[21]
Mariat C, Venet C, Jehl F, et al. Continuous infusion of ceftazidime in critically ill patients undergoing continuous veno-venous haemodiafiltration: pharmacokinetic evaluation and dose recommendation[J]. Crit Care, 2006, 10(1): R26.
[22]
Allaouchiche B, Breilh D, Jaumain H, et al. Pharmacokinetics ofcefepime during continuous venovenous hemodiafiltration[J]. Antimicrob Agents Chemother, 1997, 41(11): 2424–2427.
[23]
Bellmann R, Falkensammer G, Seger C, et al. Teicoplanin pharmacokinetics in critically ill patients on continuous veno-venous hemofiltration[J]. Int J Clin Pharmacol Ther, 2010, 48(4): 243–249.
[24]
Seyler L, Cotton F, Taccone FS, et al. Recommended beta-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy[J]. Crit Care, 2011, 15(3): R137.
[25]
Ververs TF, van Dijk A, Vinks SA, et al. Pharmacokinetics and dosing regimen of meropenem in critically ill patients receiving continuous venovenous hemofiltration[J]. Crit Care Med, 2000, 28(10): 3412–3416.
[26]
Krueger WA, Schroeder TH, Hutchison M, et al. Pharmacokinetics of meropenem in critically ill patients with acute renal failure treated by continuous hemodiafiltration[J]. Antimicrob Agents Chemother, 1998, 42(9): 2421–2424.
[27]
Krueger WA, Neeser G, Schuster H, et al. Correlation of meropenem plasma levelswith pharmacodynamic requirements incritically ill patients receiving continuous veno-venous hemofiltration[J]. Chemotherapy, 2003, 49(6): 280–286.
[28]
Mueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration[J]. Am J Kidney Dis, 1993, 21(2): 172–179.
[29]
Akers KS, Cota JM, Frei CR, et al. Once-daily amikacin dosing in burn patients treated with continuous venovenous hemofiltration[J]. Antimicrob Agents Chemother, 2011, 55(10): 4639–4642.
[30]
D′Arcy DM, Casey E, Gowing CM, et al. An open prospective study ofamikacin pharmacokinetics in critically ill patients during treatment with continuous venovenous haemodiafiltration[J]. BMC Pharmacol Toxicol, 2012, 13(1): 14–17.
[31]
Petejova N, Zahalkova J, Duricova J, et al. Gentamicin pharmacokinetics during continuous venovenous hemofiltration in critically ill septic patients[J]. J Chemother, 2012, 24(2): 107–112.
[32]
Taccone FS, de Backer D, Laterre PF, et al. Pharmacokinetics of a loading dose of amikacin in septic patients undergoing continuous renal replacement therapy[J]. Int J Antimicrob Agents, 2011, 37(6): 531–535.
[33]
Udy AA, Roberts JA, Boots RJ, et al. Augmented renal clearance: implications for antibacterial dosing in the critically ill[J]. Clin Pharmacokinet, 2010, 49(1): 1–16.
[34]
Del Dot ME, Lipman J, Tett SE. Vancomycin pharmacokinetics in critically ill patients receiving continuous hemodialfiltration[J]. Br J Clin Pharmacol, 2004, 58(3): 259–268.
[35]
Boereboom FT, Ververs FF, Blankestijn PJ, et al. Vancomycin clearance during continuous venovenous haemofiltration in critically ill patients[J]. Intensive Care Med, 1999, 25(10): 1100–1104.
[36]
Santre C, Leroy O, Simon M, et al. Pharmacokinetics of vancomycin during continuous hemodialfiltration[J]. Intensive Care Med, 1993, 19(6): 347–350.
[37]
Honore PM, Jacobs R, Joannes-Boyau O, et al. Continuousrenal replacement therapy-related strategies to avoid colistin toxicity: a clinically orientated review[J]. Blood Purif, 2014, 37(4): 291–295.
[38]
Petejova N, Martinek A, Zahalkova J, et al. Vancomy cinremoval during low-flux and high-flux extended daily hemodialysis in critically ill septic patients[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2012, 156(4): 342–347.
[39]
Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin[J]. Antimicrob Agents Chemother, 2004, 48(1): 63–68.
[40]
Khadzhynov D, Slowinski T, Lieker I, et al. Plasma pharmacokinetics of daptomycin in critically ill patients with renal failure and under going CVVHD[J]. Int J Clin Pharmacol Ther, 2011, 49(11): 656–665.
[41]
Andes D, van Ogtrop ML, Peng J, et al. In vivo pharmacodynamics of a new oxazolidinone (linezolid)[J]. Antimicrob Agents Chemother, 2002, 46(11): 3484–3489.
[42]
Jamal JA, Mueller BA, Choi G, et al. How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy[J]. Diagn Microbiol Infect Dis, 2015, 82(1): 92–103.
[1] 周红玉, 李羽. 右美托咪定在儿童患者麻醉中的应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 482-487.
[2] 东蓓, 周素芳, 张璇. 晚孕期孕妇生殖道B族链球菌感染对母儿结局的影响[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(03): 347-354.
[3] 刘晓彬, 朱峰. 危重烧伤患者肾功能亢进的药物治疗[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 260-264.
[4] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[5] 许东梅, 马小扬, 黄宇明. 神经梅毒诊疗现状及进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 300-306.
[6] 李凤霞, 毛静, 杨军杰, 钟炎平, 刘鑫华, 雷旭, 雷飞飞, 赵琴, 饶荣, 谭华炳. 儿童恙虫病临床特点及诊治研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 289-294.
[7] 张仙, 程丽琴, 刘小乐. 预防性应用头孢氨苄联合甲硝唑对子宫输卵管造影术后急性盆腔炎性疾病的影响[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(04): 321-325.
[8] 何勇, 叶剑锋, 简盛生. 万古霉素复合型抗菌药物骨水泥植入治疗22例骨科术后感染者的疗效[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(02): 163-166.
[9] 杨萍, 袁华兵. 脑卒中患者无症状菌尿症与有症状尿路感染的病原菌分布及耐药特征[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(02): 150-156.
[10] 石晓萍, 方洁, 王婷, 许青, 吕迁洲. 肝移植受者万古霉素治疗药物监测现状分析及群体药代动力学软件的临床验证[J]. 中华移植杂志(电子版), 2021, 15(01): 15-19.
[11] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[12] 高秀平, 彭朝辉, 陶任重. 预防性使用抗菌药物在肥胖患者开放腹股沟疝无张力修补术中的临床疗效[J]. 中华疝和腹壁外科杂志(电子版), 2021, 15(04): 366-368.
[13] 王思伟, 山凤连, 曹秀芬, 杨琳琳, 吕高超, 姜波. 盐酸氨溴索与抗菌药物治疗糖尿病合并肺部感染对SP-A和NF-κB水平的影响意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 486-488.
[14] 顾鹏, 叶飞, 陈劲进, 彭晓波, 胡雪莲, 张蓉. 降钙素原监测在心脏围手术期抗感染中的临床应用[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 456-460.
[15] 张睿, 石刚, 杨世华, 苏昊, 周思成, 裴炜, 梁建伟, 刘正, 关旭, 赵志勋, 刘骞, 周志祥, 王锡山, 张景, 周海涛. 洛铂用于结直肠癌术中腹腔灌注化疗的药代动力学研究[J]. 中华结直肠疾病电子杂志, 2020, 09(02): 144-149.
阅读次数
全文


摘要