切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (02) : 170 -175. doi: 10.3877/cma.j.issn.2096-1537.2018.02.013

所属专题: 文献

基础研究

乌司他丁抑制肿瘤坏死因子-α诱导血管内皮细胞高通透性的机制研究
刘思佚1, 魏伏1, 刘疏柯1, 罗丽1, 许珊1, 张丹1,()   
  1. 1. 400016 重庆医科大学附属第一医院
  • 收稿日期:2018-03-06 出版日期:2018-05-28
  • 通信作者: 张丹
  • 基金资助:
    国家自然科学基金面上项目(81071531;81372102); 重庆市自然科学基金面上项目(CSTC 2009BB5066); 天普研究基金项目(UF201314)

Inhibitory role of Ulinastatin in TNF-α induced hyperpermeability of endothelial cells via Rho/ROCK pathway

Siyi Liu1, Fu Wei1, Shuke Liu1, Li Luo1, Shan Xu1, Dan Zhang1,()   

  1. 1. Department of Intensive Care Unit, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
  • Received:2018-03-06 Published:2018-05-28
  • Corresponding author: Dan Zhang
  • About author:
    Corresponding author: Zhang Dan, Email:
引用本文:

刘思佚, 魏伏, 刘疏柯, 罗丽, 许珊, 张丹. 乌司他丁抑制肿瘤坏死因子-α诱导血管内皮细胞高通透性的机制研究[J]. 中华重症医学电子杂志, 2018, 04(02): 170-175.

Siyi Liu, Fu Wei, Shuke Liu, Li Luo, Shan Xu, Dan Zhang. Inhibitory role of Ulinastatin in TNF-α induced hyperpermeability of endothelial cells via Rho/ROCK pathway[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(02): 170-175.

目的

探讨乌司他丁(UTI)对肿瘤坏死因子-α(TNF-α)诱导的血管内皮细胞通透性增高的影响及其主要分子机制。

方法

离体培养人脐静脉内皮细胞系EA.hy926,分别以UTI和TNF-α作用于EA.hy926,小室法测单层细胞通透性,免疫荧光法测磷酸化肌球蛋白磷酸酶靶向亚基1(p-MYPT1)的表达;分别采用免疫细胞化学法、Western Blot法测与通透性相关的关键分子(RhoA、ROCK2、MYPT1、p-MYPT1及VE-cadherin)表达的变化情况。

结果

TNF-α作用下EA.hy926单层细胞通透性增加,细胞内p-MYPT1的表达量较正常对照组明显增加,而UTI可改善EA.hy926细胞的上述变化情况;免疫细胞化学结果显示,与正常对照组比较,TNF-α作用下RhoA、ROCK2的表达明显增加,而UTI可抑制RhoA、ROCK2的高表达;Western Blot结果显示,与正常对照组比较,TNF-α作用下p-MYPT1、RhoA和ROCK2的表达明显增加,VE-cadherin的表达明显降低(均P<0.05),而UTI可抑制p-MYPT1、RhoA和ROCK2蛋白的高表达,增加VE-cadherin的表达。

结论

UTI可能通过Rho/ROCK信号通路抑制TNF-α引起的EA.hy926细胞通透性增加。

Objective

To investigate the role of Ulinastatin (UTI) on the hyper-permeability of human umbilical vein endothelial cell by TNF-α and possible underlying mechanism.

Methods

Human umbilical vein endothelial cell (EA.hy926) were cultured in vitro and exposed to UTI and tumor necrosis factor alpha (TNF-α) respectively. The permeability of EA.hy926 cells were detected by a transwell chamber system. Immunofluorescence was used to assay the expression of p-MYPT1. The expression of the key molecules related to endothelial permeability (RhoA, ROCK2, MYPT1, p-MYPT1 and VE-cadherin) were detected by immunocytochemistry assays and western-blot.

Results

Compared with the control group, the permeability of cell exposed to TNF-αwas increased significantly, the expression of p-MYPT1 was higher, but UTI could attenuate the phenomena. The immunocytochemistry assays showed that the expression of RhoA and ROCK2 was significantly upregulated in cells treated with TNF-α; however, UTI could inhibit the high expression of these two proteins. Western blots showed that the expression of p-MYPT1, RhoA and ROCK2 were significantly higher (P<0.05) and VE-cadherin was significantly lower (P<0.05) after incubation with TNF-α, but UTI treatment could moderate the above changes.

Conclusion

The serum from septic patients induced hyperpermeability of EA.hy926 cells can be attenuated by ulinastatin in a dose-dependent manner.

表1 不同UTI浓度对TNF-α作用下EA.hy926细胞高通透性的影响(n=3
图1 UTI对TNF-α作用下EA.hy926细胞p-MYPT1表达水平的影响。以UTI(100 U/ml)预处理EA.hy926细胞1 h,然后加入TNF-α作用24 h,于激光共聚焦显微镜下观察p-MYPT1的表达情况,其中图a为正常对照组;图b为TNF-α组;图c为UTI组;图d为UTI+TNF-α组;箭头示TNF-α所引起的p-MYPT1高表达;UTI为乌司他丁;TNF-α为肿瘤坏死因子α
图2 UTI对TNF-α作用下EA.hy926细胞RhoA及ROCK2表达的影响(×200)。以UTI(100 U/ml)预处理EA.hy926细胞1 h,然后加入TNF-α作用24 h,于200倍显微镜下观察RhoA及ROCK2的表达情况,其中图a/e为正常对照组;图b/f为TNF-α组;图c/g为UTI组;图d/h为UTI+TNF-α组;UTI为乌司他丁;TNF-α为肿瘤坏死因子α
图3 UTI对TNF-α作用下EA.hy926细胞Rho/ROCK信号通路关键分子表达的影响。以UTI(100 U/ml)预处理EA.hy926细胞1 h,然后加入TNF-α作用24 h,用Western-blot法检测细胞RhoA、ROCK2、VE-cadherin、MYPT1及p-MYPT1蛋白的表达
[1]
Singer M,Deutschman CS,Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
[2]
Tillmann B,Wunsch H. Epidemiology and outcomes [J]. Crit Care Clin, 2018, 34(1): 15-27.
[3]
Ince C,Mayeux PR,Nguyen T, et al. The endothelium in sepsis [J]. Shock (Augusta, Ga), 2016, 45(3): 259-270.
[4]
Kumar P,Shen Q,Pivetti CD, et al. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation [J]. Expert Rev Mol Med, 2009, 11: e19.
[5]
Yamamoto T,Ugawa Y,Kawamura M, et al. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics [J]. J Cell Commun Signal, 2018, 12(1): 369-378.
[6]
Nelson CM,Pirone DM,Tan JL, et al. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA [J]. Mol Biol Cell, 2004, 15(6): 2943-2953.
[7]
Karnad DR,Bhadade R,Verma PK, et al. Intravenous administration of ulinastatin (human urinary trypsin inhibitor) in severe sepsis: a multicenter randomized controlled study [J]. Intensive Care Med, 2014, 40(6): 830-838.
[8]
Linder A,Russell JA. An exciting candidate therapy for sepsis: ulinastatin, a urinary protease inhibitor [J]. Intensive Care Med, 2014, 40(8): 1164-1167.
[9]
Liu D,Yu Z,Yin J, et al. Effect of ulinastatin combined with thymosin alpha1 on sepsis: A systematic review and meta-analysis of Chinese and Indian patients [J]. J Crit Care, 2017, 39: 259-266.
[10]
Yang B,Gao M,Wang K, et al.Intraintestinal administration of ulinastatin protects against sepsis by relieving intestinal damage [J]. J Surg Res, 2017, 211: 70-78.
[11]
Koga Y,Fujita M,Tsuruta R, et al. Urinary trypsin inhibitor suppresses excessive superoxide anion radical generation in blood, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats [J]. Neurol Res, 2010, 32(9): 925-932.
[12]
Xie F,Min S,Chen J, et al. Ulinastatin inhibited sepsis-induced spinal inflammation to alleviate peripheral neuromuscular dysfunction in an experimental rat model of neuromyopathy [J]. J Neurochem, 2017, 143(2): 225-235.
[13]
Gao C,Li R,Wang S. Ulinastatin protects pulmonary tissues from lipopolysaccharide-induced injury as an immunomodulator [J]. J Trauma Acute Care Surg, 2012, 72(1): 169-176.
[14]
Bingyang J,Jinping L,Mingzheng L, et al. Effects of urinary protease inhibitor on inflammatory response during on-pump coronary revascularisation. Effect of ulinastatin on inflammatory response [J]. J Cardiovasc Surg, 2007, 48(4): 497-503.
[15]
Schaefer A,Reinhard NR,Hordijk PL. Toward understanding RhoGTPase specificity: structure, function and local activation [J]. Small GTPases, 2014, 5(2): 6.
[16]
Julian L,Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions [J]. Small GTPases, 2014, 5(2): e29846.
[17]
Yao L,Romero MJ,Toque HA, et al. The role of RhoA/Rho kinase pathway in endothelial dysfunction [J]. J Cardiovasc Dis Res, 2010, 1(4): 165-170.
[18]
Zhang C,Wu Y,Xuan Z, et al. p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM [J]. Virus Res, 2014, 192: 6-15.
[19]
Calvano SE,Xiao W,Richards DR, et al. A network-based analysis of systemic inflammation in humans [J]. Nature, 2005, 437(7061): 1032-1037.
[20]
Strzelecka-Kiliszek A,Mebarek S,Roszkowska M, et al. Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization [J]. Biochim Biophys Acta, 2017, 1861(5 Pt A): 1009-1023.
[21]
Pranatharthi A,Ross C,Srivastava S. Cancer stem cells and radioresistance: Rho/ROCK pathway plea attention [J]. Stem Cells Int, 2016, 2016: 5785786.
[22]
Zeng Y,Xie H,Qiao Y, et al.Formin-like 2 regulates Rho/ROCK pathway to promote actin assembly and cell invasion of colorectal cancer [J]. Cancer Sci, 2015, 106(10): 1385-1393.
[23]
Matsuoka T,Yashiro M. Rho/ROCK signaling in motility and metastasis of gastric cancer [J]. World J Gastroenterol, 2014, 20(38): 13756-13766.
[1] 王育凯, 陈军贤, 施小伟, 吴本权. 连续性肾脏替代治疗联合乌司他丁对严重脓毒症患者临床疗效的Meta分析[J]. 中华危重症医学杂志(电子版), 2021, 14(04): 297-307.
[2] 刘欣, 李艳敏, 郑佳, 赵商岐, 唐晓慧, 赵静, 周文涛, 周晓涛. COPD患者NLRP3炎症小体及TNF-α、HMGB1的表达及相互关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 468-472.
[3] 蔡欣诺, 邵思琪, 马华, 周冬梅, 潘彬, 殷松楼. 艾拉莫德通过抑制TNF-α减轻博来霉素诱导的小鼠间质性肺病[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 331-334.
[4] 辜德明, 周家仍, 罗旋, 梁振明, 雷智贤. 细胞因子IL-6、TNF-α评估小儿支原体肺炎病情进展和预后[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 505-507.
[5] 甘丽杏, 郑永超. 阿奇霉素对COPD急性发作期患者组蛋白去乙酰化酶2表达影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 321-324.
[6] 刁正文, 徐愈畅, 张杰, 张华军, 李秋霖, 陈卉. β-七叶皂苷钠联合甘油果糖治疗脑出血的临床效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 32-37.
[7] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[8] 崔刚, 肖友朝, 王欢, 田璧铭, 王莹, 段虎斌. RHO/ROCK信号通路对创伤性脑损伤后颅内神经系统微环境的影响[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 204-208.
[9] 周嫏嬛, 龚伟玲, 孙孚春, 宋颂. 生长抑素联合乌司他丁治疗消化道出血的Meta分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 26-32.
[10] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[11] 王敏, 刘虹. 乌司他丁经p38MAPK通路对脓毒症大鼠急性肾损伤影响的研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 566-571.
[12] 蔡莉萍, 燕琪慧, 郭蔚莹. TNF-α在绝经后骨质疏松症中的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(03): 274-279.
[13] 杨玖, 洪梅, 刘志远, 朱诺. 益气除痰方联合化疗对中晚期非小细胞肺癌患者近期疗效及患者血清IL-2、TNF-α和免疫功能的影响[J]. 中华临床医师杂志(电子版), 2021, 15(12): 948-953.
[14] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
[15] 田齐. 血清Clara细胞分泌蛋白16、肿瘤坏死因子-α、白介素-6、肺表面活性蛋白D在重症肺炎患儿中的水平变化[J]. 中华诊断学电子杂志, 2021, 09(03): 192-196.
阅读次数
全文


摘要