切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (02) : 176 -181. doi: 10.3877/cma.j.issn.2096-1537.2018.02.014

所属专题: 文献

基础研究

右美托咪定激活Nrf2-ARE信号通路对创伤性脑损伤的抗氧化作用
张晓秀1, 吴海鹰1, 王艳雪1, 钱传云1,()   
  1. 1. 650032 昆明医科大学第一附属医院急救医学部
  • 收稿日期:2018-03-15 出版日期:2018-05-28
  • 通信作者: 钱传云
  • 基金资助:
    云南省医疗卫生内设研究机构项目(2017NS065); 昆明医科大学研究生创新基金(2017S088); 云南省科技厅-昆明医科大学应用基础研究联合项目(2014FA012)

Antioxidant effects of dexmedetomidine in traumatic brain injury rats by activating Nrf2-ARE pathway

Xiaoxiu Zhang1, Haiying Wu1, Yanxue Wang1, Chuanyun Qian1,()   

  1. 1. Department of Emergency and Intensive Care Unit, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
  • Received:2018-03-15 Published:2018-05-28
  • Corresponding author: Chuanyun Qian
  • About author:
    Corresponding author: Qian Chuanyun, Email:
引用本文:

张晓秀, 吴海鹰, 王艳雪, 钱传云. 右美托咪定激活Nrf2-ARE信号通路对创伤性脑损伤的抗氧化作用[J]. 中华重症医学电子杂志, 2018, 04(02): 176-181.

Xiaoxiu Zhang, Haiying Wu, Yanxue Wang, Chuanyun Qian. Antioxidant effects of dexmedetomidine in traumatic brain injury rats by activating Nrf2-ARE pathway[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(02): 176-181.

目的

探讨右美托咪定(DEX)对创伤性脑损伤(TBI)模型大鼠的神经保护作用、氧自由基清除及脑组织红系衍生的核因子相关因子2(Nrf2)-抗氧化反应原件(ARE)信号通路参与的机制。

方法

选择健康成年雄性大鼠体重300~350 g构建TBI模型,将60只SD大鼠分为3组:假手术组(Sham组)、TBI组和TBI+DEX组,每组20只。其中Sham组仅去除脑颅骨不打砸,TBI组和DEX组均采用改良自由落体装置制备TBI模型,随后在造模后1 h分别给予等量0.9%NaCl和DEX(100 μg/kg)处理。通过采用改良神经功能缺损评分(mNSS)评价神经功能,脑组织干湿重称量法评价脑水肿。使用酶活试剂盒检测损伤24 h后抗氧化酶超氧化物歧化酶(SOD)和丙二醛(MDA)。最后使用免疫印迹试验(Western blot)和实时定量基因扩增荧光检测系统(RT-qPCR)的方法检测Nrf2-ARE信号通路及其下游分子血红素加氧酶1(HO-1)、醌氧化还原酶1(NQO-1)的表达水平,表达情况。

结果

与TBI组相比,DEX组mNSS评分显著降低(P<0.05),DEX组能够明显减少脑水肿(P<0.05);DEX组能够明显增加抗氧化酶SOD活性,降低氧化应激产物MDA的水平(P<0.05)。

结论

DEX能够激活Nrf2-ARE信号通路诱导下游抗氧化/解毒酶等靶基因的表达,从而抑制氧化应激损伤发挥神经保护作用。

Objective

To investigate the neuroprotective effect of dexmedetomidine in traumatic brain injury (TBI) rat model and the relationship with clearance of oxygen free radicals and the erythroid-derived nuclear factor-related factor 2 (Nrf2)-antioxidant/electrophilic response element (ARE) signal pathway.

Methods

Healthy adult male SD rats weighing 300-350 g were selected to construct a TBI model. Sixty rats were divided into three groups: sham operation group (Sham group), traumatic brain injury group (TBI group) and dexmedetomidine (TBI+ DEX group) group. In Sham group, only brain skulls were removed. In TBI and TBI+ DEX groups, the rats were all prepared with a modified free-fall device to induce traumatic brain injury . Rats in TBI and TBI+ DEX groups received same amount of saline and dexmedetomidine (100 μg/kg) treatment 1 h after the onset of TBI respectively. Neurological function was evaluated by modified neurological deficit scores (mNss), and cerebral edema was evaluated by brain dry-wet weight method. The enzyme activity kit was used to detect the antioxidant enzymes SOD and MDA after 24 hours of injury. Finally, Western blot, RT-qPCR and immunofluorescence methods were used to detect the expression level of Nrf2-ARE signaling pathway and its downstream molecules HO-1, NQO-1expression.

Results

Compared with TBI group, mNss scores in DEX group were significantly lower (P<0.05). DEX could significantly reduce brain edema (P<0.05); DEX could significantly reduce the levels of antioxidant enzyme SOD and oxidative stress product MDA (P<0.05).

Conclusion

DEX can activate Nrf2-ARE signaling pathway to induce the expression of target genes such as antioxidant/detoxifying enzymes downstream to inhibit oxidative stress and exert neuroprotection.

图1 两组大鼠在损伤后1 h、1 d、3 d时mNSS评分比较
图2 三组大鼠损伤侧脑含水量的比较
图3 三组大鼠损伤24 h时脑组织SOD及MDA水平比较
图4 DEX对TBI大鼠Nrf2的影响 免疫荧光分析显示DEX能够促进Nrf2核转位(4a,×400),Western blot分析显示DEX治疗后能够促进Nrf2核转位(4b、4c)并能够激活Nfr2-ARE信号通路,促进其下游蛋白HO-1、NQO-1的分子表达(4d、4e),PCR分析显示经DEX治疗后能够增强HO-1与NQO-1的转录水平(4f、4g)
[1]
Okonkwo DO,Shutter LA,Moore C, et al. Brain oxygen optimization in severe traumatic brain injury phase-Ⅱ: a Phase Ⅱ randomized trial [J]. Crit Care Med, 2017, 45(11): 1907-1914.
[2]
Mehta A,Prabhakar M,Kumar P, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders [J]. Eur J Pharmacol, 2013, 698(1-3): 6-18.
[3]
Liu ZM,Chen QX,Chen ZB, et al. RIP3 deficiency protects against traumatic brain injury (TBI) through suppressing oxidative stress, inflammation and apoptosis: dependent on AMPK pathway [J]. Biochem Biophys Res Commun, 2018, 499(2): 112-119.
[4]
Hammad A,Westacott L,Zaben M. Correction to: the role of the complement system in traumatic brain injury: a review [J]. J Neuroinflammation, 2018, 15(1): 59.
[5]
Thornton C,Baburamani AA,Kichev A. Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury [J]. Bioch Soc Trans, 2017, 45(5): 1067-1076.
[6]
Glippa O,Engström-Öst J,Kanerva M, et al. Oxidative stress and antioxidant defense responses in Acartia copepods in relation to environmental factors [J]. PLoS One, 2018, 13(4): e0195981.
[7]
Bellezza I,Giambanco I,Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress [J]. Biochim Biophys Acta, 2018, 1865(5): 721-733.
[8]
Yan W,Wang HD,Hu ZG, et al. Activation of Nrf2-ARE pathway in brain after traumatic brain injury [J]. Neurosci Lett, 2008, 431(2): 150-154.
[9]
Cheng ZG,Zhang GD,Shi PQ. Expression and antioxidation of Nrf2/ARE pathway in traumatic brain injury [J]. Asian Pac J Trop Med, 2013, 6(4): 305-310
[10]
Zhang L,Wang H. Targeting the NF-E2-related factor 2 pathway: a novel strategy for traumatic brain injury [J]. Mol Neurobiol, 2018, 55(2): 1773-1785.
[11]
Lempiainen J,Finckenberg P,Mervaala EE, et al. Dexmedetomidine preconditioning ameliorates kidney ischemia-reperfusion injury [J]. Pharmacol Res Perspect, 2014, 2(3): e00045.
[12]
Liu XR,Li T,Cao L, et al. Dexmedetomidine attenuates H2O2-induced neonatal rat cardiomyocytes apoptosis through mitochondria- and ER-medicated oxidative stress pathways [J]. Mol Med Rep, 2018, 17(5): 7258-7264.
[1] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[2] 李志伟, 向琪, 彭胜男, 郭玲, 孙贱根, 杨川. 右美托咪定与曲马多分别复合罗哌卡因在全麻下结肠癌根治术中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 182-185.
[3] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[4] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[5] 张少华, 崔振华, 马斌, 仲伟娟. 右美托咪定复合布比卡因在腹股沟疝Lichtenstein术中应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(03): 312-315.
[6] 芮杰, 陈家新, 于会梅, 张畅. 局部神经阻滞联合静脉应用右美托咪定在老年腹股沟疝术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 196-200.
[7] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[8] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[9] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 黄泽辉, 梁杰贤, 曾伟. 右美托咪定联合艾司氯胺酮在小儿无痛胃镜检查中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 510-513.
[12] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[13] 孙凤兰, 周萍, 程兴璞, 张倩倩. 腹腔镜全子宫切除术对子宫肌瘤患者机体氧化应激损伤及术后并发症的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 149-153.
[14] 喇宏玲, 李育耕, 阿里木江·司马义, 徐桂萍, 苏涛. 右美托咪定复合舒芬太尼应用于肥胖患者无痛胃镜检查清醒镇静的效果[J]. 中华胃食管反流病电子杂志, 2023, 10(02): 77-81.
[15] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
阅读次数
全文


摘要