切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (02) : 195 -199. doi: 10.3877/cma.j.issn.2096-1537.2018.02.017

所属专题: 文献

综述

脑乳酸代谢的特殊性以及其生物学功能的研究进展
李静超1, 欧阳彬1,()   
  1. 1. 510080 广州,中山大学附属第一医院重症医学科
  • 收稿日期:2018-03-22 出版日期:2018-05-28
  • 通信作者: 欧阳彬

Advances in Brain Lactate Metabolism

Jingchao Li1, Bin Ouyang1,()   

  1. 1. Department of Intensive Care Unite, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2018-03-22 Published:2018-05-28
  • Corresponding author: Bin Ouyang
  • About author:
    Corresponding author: Ouyang Bin, Email:
引用本文:

李静超, 欧阳彬. 脑乳酸代谢的特殊性以及其生物学功能的研究进展[J]. 中华重症医学电子杂志, 2018, 04(02): 195-199.

Jingchao Li, Bin Ouyang. Advances in Brain Lactate Metabolism[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(02): 195-199.

各种原因导致的体内乳酸产生增多或清除减少,可导致血乳酸升高,机体的许多组织可产生乳酸,肝脏及肾脏是最主要的乳酸清除器官,不同状态下,机体产生及清除乳酸的能力可发生变化。静息状态下脑是一个净产乳酸的器官,各种原因导致的血乳酸升高时,脑可摄取及利用乳酸。脑内神经细胞及星形胶质细胞均可产生乳酸,可能以后者糖酵解或糖原酵解产生为主,星形胶质细胞产生乳酸受蓝斑肾上腺素能系统调节。乳酸在脑内除作为能量底物外,对长期记忆形成、脑内pH及呼吸功能调节、体液平衡调节、神经血管偶联调节具有一定的作用,此外,乳酸可作为信号分子与脑内的GRP81受体结合,乳酸的众多生物学功能提示乳酸可作为容积传递信号分子参与全脑代谢及功能调节。本研究从中枢神经系统角度对乳酸的生物学效应进行综述,总结脑乳酸代谢的特殊性及其生物学功能。

Any conditions that cause the body to produce excess lactate or insufficiently remove lactate can result in hyperlactatemia. Many tissues are able to produce lactate while the liver and the kidney are the two main organs in charge of removing lactate. The ability of different tissues to produce or remove lactate changes according to various conditions. At rest, brain only produce lactate without utilization. However, an increased blood lactate may turn brain into an organ taking and utilizing lactate. Both neurons and astrocytes could produce lactate. Glycolysis or glycogenesis in the astrocytes may be the main source of brain lactate. The production of lactate in the astrocytes is regulated by adrenergic system in locus caeruleus. In addition to acting as an energy substrate in the brain, lactate plays a role in long-term memory formation, regulation of intracerebral pH, respiratory function, humoral balance and neurovascular coupling. In addition, lactate can serves as a signal molecule and bind to GRP81 receptor in the brain. The numerous biological functions of lactate suggest that it can act as a volume-transmitting signaling molecule to participate in brain metabolism and brain function regulation. This review concentrate on advances in lactate metabolism and biological function in the brain.

[1]
Fuller BM,Dellinger RP. Lactate as a hemodynamic marker in the critically ill [J]. Curr Opin Crit Care, 2012, 18(3): 267-272.
[2]
Nguyen HB,Rivers EP,Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock [J]. Crit Care Med, 2004, 32(8): 1637-1642.
[3]
Nichol A,Bailey M,Egi M, et al. Dynamic lactate indices as predictors of outcome in critically ill patients [J]. Crit Care, 2011, 15(5): R242.
[4]
Nichol AD,Egi M,Pettila V, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study [J]. Crit Care, 2010, 14(1): R25.
[5]
Mizock BA,Falk JL. Lactic acidosis in critical illness [J]. Crit Care Med, 1992, 1(20): 80-93.
[6]
Kushimoto S,Akaishi S,Sato T, et al. Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissuehypoxia/hypoperfusion in critically ill patients [J]. Acute Med Surg, 2016, 3(4): 293-297.
[7]
Suetrong B,Walley KR. Lactic acidosis in sepsis: it′s not all anaerobic: implications for diagnosis and management [J].Chest, 2016, 149(1): 252-261.
[8]
Levy B. Lactate and shock state: the metabolic view [J]. Curr Opin Crit Care, 2006, 12(4): 315-321.
[9]
Levy B,Desebbe O,Montemont C, et al. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states [J]. Shock, 2008, 30(4): 417-421.
[10]
Kraut JA,Madias NE. Lactic acidosis [J].N Engl J Med, 2014, 371(24): 2309-2319.
[11]
van Hall G. Lactate kinetics in human tissues at rest and during exercise [J]. Acta Physiol (Oxf), 2010, 199(4): 499-508.
[12]
Madias NE. Lactic acidosis [J]. Kidney Int, 1986, 29(3): 752-774.
[13]
San Martín A,Ceballo S,Ruminot I, et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in singlecancer cells [J]. PLoS One, 2013, 8(2): e57712.
[14]
Dienel GA. Brain lactate metabolism: the discoveries and the controversies [J]. J Cereb Blood Flow Metab, 2012, 32(7): 1107-1138.
[15]
Pellerin L,Magistretti PJ. Sweet sixteen for ANLS [J].J Cereb Blood Flow Metab, 2012, 32(7): 1152-1166.
[16]
Dienel GA. Fueling and imaging brain activation [J]. ASN Neuro, 2012, 4(5). pii: e00093.
[17]
Vaishnavi SN,Vlassenko AG,Rundle MM, et al. Regional aerobic glycolysis in the human brain [J]. Proc Natl Acad Sci U S A, 2010, 107(41): 17757-17762.
[18]
Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle [J].Neuroscience, 2007, 145(1): 11-19.
[19]
Barros LF. Metabolic signaling by lactate in the brain [J]. Trends Neurosci, 2013, 36(7): 396-404.
[20]
Dienel GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression [J]. Neurosci Lett, 2017, 637: 18-25.
[21]
Bekar LK,Wei HS,Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand [J]. J Cereb Blood Flow Metab, 2012, 32(12): 2135-2145.
[22]
Hertz L,Lovatt D,Goldman SA, et al. Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and Ca2+ [J]. Neurochem Int, 2010, 57(4): 411-420.
[23]
Bekar LK,He W,Nedergaard M. Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo [J]. Cereb Cortex, 2008, 18(12): 2789-2795.
[24]
Taher M,Leen WG,Wevers RA, et al. Lactate and its many faces [J]. Eur J Paediatr Neurol, 2016, 20(1): 3-10.
[25]
Boumezbeur F,Petersen KF,Cline GW, et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy [J]. J Neurosci, 2010, 30(42): 13983-13991.
[26]
Mächler P,Wyss MT,Elsayed M, et al. In vivo evidence for a lactate gradient from astrocytes to neurons [J]. Cell Metab, 2016, 23(1): 94-102.
[27]
Suzuki A,Stern SA,Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation [J]. Cell, 2011, 144(5): 810-823.
[28]
Rex A,Bert B,Fink H, et al. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis [J]. Physiol Behav, 2009, 98(4): 467-473.
[29]
Erlichman JS,Hewitt A,Damon TL, et al. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis [J]. J Neurosci, 2008, 28(19): 4888-4896.
[30]
MacVicar BA,Newman EA. Astrocyte regulation of blood flow in the brain [J]. Cold Spring Harb Perspect Biol, 2015, 7(5). pii: a020388.
[31]
Filosa JA,Iddings JA. Astrocyte regulation of cerebral vascular tone [J]. Am J Physiol Heart Circ Physiol, 2013, 305(5): H609-619.
[32]
Gordon GR,Choi HB,Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles [J]. Nature, 2008, 456(7223): 745-749.
[33]
Ohbuchi T,Sato K,Suzuki H, et al. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus [J]. J Physiol, 2010, 588(Pt 12): 2147-2162.
[34]
Bergersen LH,Gjedde A. Is lactate a volume transmitter of metabolic states of the brain? [J]. Front Neuroenergetics, 2012, 4: 5.
[35]
Morland C,Lauritzen KH,Puchades M, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain [J]. J Neurosci Res, 2015, 93(7): 1045-1055.
[36]
Lauritzen KH,Morland C,Puchades M, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energymetabolism [J]. Cereb Cortex, 2014, 24(10): 2784-2795.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[3] 吴雪烁, 冯景, 周毅. 乳腺癌组织微生物群特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 305-308.
[4] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[5] 李晓晖, 上官昌盛, 向英, 裴芝皆, 车俊志, 谢飞. 3D腹腔镜袖状胃切除术后机体能量代谢与多囊卵巢综合征患者性激素水平关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 538-541.
[6] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[7] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[8] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[9] 潘春江, 李科, 李新楼, 杨博, 任雪玲. 高龄老人骨转换代谢标志物与肾功能的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 260-264.
[10] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[11] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[12] 王磊, 李梦, 孙文利, 刘瑞, 王红春, 卢光泽, 赵颖, 郭进艳, 刘红星. 液相色谱质谱法对急性白血病患者血浆代谢组学的特征分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 850-857.
[13] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[14] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
[15] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
阅读次数
全文


摘要