[1] |
Fuller BM,Dellinger RP. Lactate as a hemodynamic marker in the critically ill [J]. Curr Opin Crit Care, 2012, 18(3): 267-272.
|
[2] |
Nguyen HB,Rivers EP,Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock [J]. Crit Care Med, 2004, 32(8): 1637-1642.
|
[3] |
Nichol A,Bailey M,Egi M, et al. Dynamic lactate indices as predictors of outcome in critically ill patients [J]. Crit Care, 2011, 15(5): R242.
|
[4] |
Nichol AD,Egi M,Pettila V, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study [J]. Crit Care, 2010, 14(1): R25.
|
[5] |
Mizock BA,Falk JL. Lactic acidosis in critical illness [J]. Crit Care Med, 1992, 1(20): 80-93.
|
[6] |
Kushimoto S,Akaishi S,Sato T, et al. Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissuehypoxia/hypoperfusion in critically ill patients [J]. Acute Med Surg, 2016, 3(4): 293-297.
|
[7] |
Suetrong B,Walley KR. Lactic acidosis in sepsis: it′s not all anaerobic: implications for diagnosis and management [J].Chest, 2016, 149(1): 252-261.
|
[8] |
Levy B. Lactate and shock state: the metabolic view [J]. Curr Opin Crit Care, 2006, 12(4): 315-321.
|
[9] |
Levy B,Desebbe O,Montemont C, et al. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states [J]. Shock, 2008, 30(4): 417-421.
|
[10] |
Kraut JA,Madias NE. Lactic acidosis [J].N Engl J Med, 2014, 371(24): 2309-2319.
|
[11] |
van Hall G. Lactate kinetics in human tissues at rest and during exercise [J]. Acta Physiol (Oxf), 2010, 199(4): 499-508.
|
[12] |
Madias NE. Lactic acidosis [J]. Kidney Int, 1986, 29(3): 752-774.
|
[13] |
San Martín A,Ceballo S,Ruminot I, et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in singlecancer cells [J]. PLoS One, 2013, 8(2): e57712.
|
[14] |
Dienel GA. Brain lactate metabolism: the discoveries and the controversies [J]. J Cereb Blood Flow Metab, 2012, 32(7): 1107-1138.
|
[15] |
Pellerin L,Magistretti PJ. Sweet sixteen for ANLS [J].J Cereb Blood Flow Metab, 2012, 32(7): 1152-1166.
|
[16] |
Dienel GA. Fueling and imaging brain activation [J]. ASN Neuro, 2012, 4(5). pii: e00093.
|
[17] |
Vaishnavi SN,Vlassenko AG,Rundle MM, et al. Regional aerobic glycolysis in the human brain [J]. Proc Natl Acad Sci U S A, 2010, 107(41): 17757-17762.
|
[18] |
Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle [J].Neuroscience, 2007, 145(1): 11-19.
|
[19] |
Barros LF. Metabolic signaling by lactate in the brain [J]. Trends Neurosci, 2013, 36(7): 396-404.
|
[20] |
Dienel GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression [J]. Neurosci Lett, 2017, 637: 18-25.
|
[21] |
Bekar LK,Wei HS,Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand [J]. J Cereb Blood Flow Metab, 2012, 32(12): 2135-2145.
|
[22] |
Hertz L,Lovatt D,Goldman SA, et al. Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and Ca2+ [J]. Neurochem Int, 2010, 57(4): 411-420.
|
[23] |
Bekar LK,He W,Nedergaard M. Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo [J]. Cereb Cortex, 2008, 18(12): 2789-2795.
|
[24] |
Taher M,Leen WG,Wevers RA, et al. Lactate and its many faces [J]. Eur J Paediatr Neurol, 2016, 20(1): 3-10.
|
[25] |
Boumezbeur F,Petersen KF,Cline GW, et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy [J]. J Neurosci, 2010, 30(42): 13983-13991.
|
[26] |
Mächler P,Wyss MT,Elsayed M, et al. In vivo evidence for a lactate gradient from astrocytes to neurons [J]. Cell Metab, 2016, 23(1): 94-102.
|
[27] |
Suzuki A,Stern SA,Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation [J]. Cell, 2011, 144(5): 810-823.
|
[28] |
Rex A,Bert B,Fink H, et al. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis [J]. Physiol Behav, 2009, 98(4): 467-473.
|
[29] |
Erlichman JS,Hewitt A,Damon TL, et al. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis [J]. J Neurosci, 2008, 28(19): 4888-4896.
|
[30] |
MacVicar BA,Newman EA. Astrocyte regulation of blood flow in the brain [J]. Cold Spring Harb Perspect Biol, 2015, 7(5). pii: a020388.
|
[31] |
Filosa JA,Iddings JA. Astrocyte regulation of cerebral vascular tone [J]. Am J Physiol Heart Circ Physiol, 2013, 305(5): H609-619.
|
[32] |
Gordon GR,Choi HB,Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles [J]. Nature, 2008, 456(7223): 745-749.
|
[33] |
Ohbuchi T,Sato K,Suzuki H, et al. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus [J]. J Physiol, 2010, 588(Pt 12): 2147-2162.
|
[34] |
Bergersen LH,Gjedde A. Is lactate a volume transmitter of metabolic states of the brain? [J]. Front Neuroenergetics, 2012, 4: 5.
|
[35] |
Morland C,Lauritzen KH,Puchades M, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain [J]. J Neurosci Res, 2015, 93(7): 1045-1055.
|
[36] |
Lauritzen KH,Morland C,Puchades M, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energymetabolism [J]. Cereb Cortex, 2014, 24(10): 2784-2795.
|