切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (02) : 195 -199. doi: 10.3877/cma.j.issn.2096-1537.2018.02.017

所属专题: 文献

综述

脑乳酸代谢的特殊性以及其生物学功能的研究进展
李静超1, 欧阳彬1,()   
  1. 1. 510080 广州,中山大学附属第一医院重症医学科
  • 收稿日期:2018-03-22 出版日期:2018-05-28
  • 通信作者: 欧阳彬

Advances in Brain Lactate Metabolism

Jingchao Li1, Bin Ouyang1,()   

  1. 1. Department of Intensive Care Unite, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2018-03-22 Published:2018-05-28
  • Corresponding author: Bin Ouyang
  • About author:
    Corresponding author: Ouyang Bin, Email:
引用本文:

李静超, 欧阳彬. 脑乳酸代谢的特殊性以及其生物学功能的研究进展[J/OL]. 中华重症医学电子杂志, 2018, 04(02): 195-199.

Jingchao Li, Bin Ouyang. Advances in Brain Lactate Metabolism[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(02): 195-199.

各种原因导致的体内乳酸产生增多或清除减少,可导致血乳酸升高,机体的许多组织可产生乳酸,肝脏及肾脏是最主要的乳酸清除器官,不同状态下,机体产生及清除乳酸的能力可发生变化。静息状态下脑是一个净产乳酸的器官,各种原因导致的血乳酸升高时,脑可摄取及利用乳酸。脑内神经细胞及星形胶质细胞均可产生乳酸,可能以后者糖酵解或糖原酵解产生为主,星形胶质细胞产生乳酸受蓝斑肾上腺素能系统调节。乳酸在脑内除作为能量底物外,对长期记忆形成、脑内pH及呼吸功能调节、体液平衡调节、神经血管偶联调节具有一定的作用,此外,乳酸可作为信号分子与脑内的GRP81受体结合,乳酸的众多生物学功能提示乳酸可作为容积传递信号分子参与全脑代谢及功能调节。本研究从中枢神经系统角度对乳酸的生物学效应进行综述,总结脑乳酸代谢的特殊性及其生物学功能。

Any conditions that cause the body to produce excess lactate or insufficiently remove lactate can result in hyperlactatemia. Many tissues are able to produce lactate while the liver and the kidney are the two main organs in charge of removing lactate. The ability of different tissues to produce or remove lactate changes according to various conditions. At rest, brain only produce lactate without utilization. However, an increased blood lactate may turn brain into an organ taking and utilizing lactate. Both neurons and astrocytes could produce lactate. Glycolysis or glycogenesis in the astrocytes may be the main source of brain lactate. The production of lactate in the astrocytes is regulated by adrenergic system in locus caeruleus. In addition to acting as an energy substrate in the brain, lactate plays a role in long-term memory formation, regulation of intracerebral pH, respiratory function, humoral balance and neurovascular coupling. In addition, lactate can serves as a signal molecule and bind to GRP81 receptor in the brain. The numerous biological functions of lactate suggest that it can act as a volume-transmitting signaling molecule to participate in brain metabolism and brain function regulation. This review concentrate on advances in lactate metabolism and biological function in the brain.

[1]
Fuller BM,Dellinger RP. Lactate as a hemodynamic marker in the critically ill [J]. Curr Opin Crit Care, 2012, 18(3): 267-272.
[2]
Nguyen HB,Rivers EP,Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock [J]. Crit Care Med, 2004, 32(8): 1637-1642.
[3]
Nichol A,Bailey M,Egi M, et al. Dynamic lactate indices as predictors of outcome in critically ill patients [J]. Crit Care, 2011, 15(5): R242.
[4]
Nichol AD,Egi M,Pettila V, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study [J]. Crit Care, 2010, 14(1): R25.
[5]
Mizock BA,Falk JL. Lactic acidosis in critical illness [J]. Crit Care Med, 1992, 1(20): 80-93.
[6]
Kushimoto S,Akaishi S,Sato T, et al. Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissuehypoxia/hypoperfusion in critically ill patients [J]. Acute Med Surg, 2016, 3(4): 293-297.
[7]
Suetrong B,Walley KR. Lactic acidosis in sepsis: it′s not all anaerobic: implications for diagnosis and management [J].Chest, 2016, 149(1): 252-261.
[8]
Levy B. Lactate and shock state: the metabolic view [J]. Curr Opin Crit Care, 2006, 12(4): 315-321.
[9]
Levy B,Desebbe O,Montemont C, et al. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states [J]. Shock, 2008, 30(4): 417-421.
[10]
Kraut JA,Madias NE. Lactic acidosis [J].N Engl J Med, 2014, 371(24): 2309-2319.
[11]
van Hall G. Lactate kinetics in human tissues at rest and during exercise [J]. Acta Physiol (Oxf), 2010, 199(4): 499-508.
[12]
Madias NE. Lactic acidosis [J]. Kidney Int, 1986, 29(3): 752-774.
[13]
San Martín A,Ceballo S,Ruminot I, et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in singlecancer cells [J]. PLoS One, 2013, 8(2): e57712.
[14]
Dienel GA. Brain lactate metabolism: the discoveries and the controversies [J]. J Cereb Blood Flow Metab, 2012, 32(7): 1107-1138.
[15]
Pellerin L,Magistretti PJ. Sweet sixteen for ANLS [J].J Cereb Blood Flow Metab, 2012, 32(7): 1152-1166.
[16]
Dienel GA. Fueling and imaging brain activation [J]. ASN Neuro, 2012, 4(5). pii: e00093.
[17]
Vaishnavi SN,Vlassenko AG,Rundle MM, et al. Regional aerobic glycolysis in the human brain [J]. Proc Natl Acad Sci U S A, 2010, 107(41): 17757-17762.
[18]
Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle [J].Neuroscience, 2007, 145(1): 11-19.
[19]
Barros LF. Metabolic signaling by lactate in the brain [J]. Trends Neurosci, 2013, 36(7): 396-404.
[20]
Dienel GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression [J]. Neurosci Lett, 2017, 637: 18-25.
[21]
Bekar LK,Wei HS,Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand [J]. J Cereb Blood Flow Metab, 2012, 32(12): 2135-2145.
[22]
Hertz L,Lovatt D,Goldman SA, et al. Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and Ca2+ [J]. Neurochem Int, 2010, 57(4): 411-420.
[23]
Bekar LK,He W,Nedergaard M. Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo [J]. Cereb Cortex, 2008, 18(12): 2789-2795.
[24]
Taher M,Leen WG,Wevers RA, et al. Lactate and its many faces [J]. Eur J Paediatr Neurol, 2016, 20(1): 3-10.
[25]
Boumezbeur F,Petersen KF,Cline GW, et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy [J]. J Neurosci, 2010, 30(42): 13983-13991.
[26]
Mächler P,Wyss MT,Elsayed M, et al. In vivo evidence for a lactate gradient from astrocytes to neurons [J]. Cell Metab, 2016, 23(1): 94-102.
[27]
Suzuki A,Stern SA,Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation [J]. Cell, 2011, 144(5): 810-823.
[28]
Rex A,Bert B,Fink H, et al. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis [J]. Physiol Behav, 2009, 98(4): 467-473.
[29]
Erlichman JS,Hewitt A,Damon TL, et al. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis [J]. J Neurosci, 2008, 28(19): 4888-4896.
[30]
MacVicar BA,Newman EA. Astrocyte regulation of blood flow in the brain [J]. Cold Spring Harb Perspect Biol, 2015, 7(5). pii: a020388.
[31]
Filosa JA,Iddings JA. Astrocyte regulation of cerebral vascular tone [J]. Am J Physiol Heart Circ Physiol, 2013, 305(5): H609-619.
[32]
Gordon GR,Choi HB,Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles [J]. Nature, 2008, 456(7223): 745-749.
[33]
Ohbuchi T,Sato K,Suzuki H, et al. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus [J]. J Physiol, 2010, 588(Pt 12): 2147-2162.
[34]
Bergersen LH,Gjedde A. Is lactate a volume transmitter of metabolic states of the brain? [J]. Front Neuroenergetics, 2012, 4: 5.
[35]
Morland C,Lauritzen KH,Puchades M, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain [J]. J Neurosci Res, 2015, 93(7): 1045-1055.
[36]
Lauritzen KH,Morland C,Puchades M, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energymetabolism [J]. Cereb Cortex, 2014, 24(10): 2784-2795.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[3] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[4] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[5] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[10] 孙琴, 梁钿苑, 张源, 任亦星. 代谢异常型肥胖患者对肥胖和减重手术的认知调查研究[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 295-299.
[11] 孙伟, 徐东升. 减重与代谢外科肝脏悬吊方式研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 261-268.
[12] 张鑫, 刘志芬, 郭云童. 肥胖与抑郁症相关性的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 255-260.
[13] 王鹏鹏, 周涵苓, 孟化, 刘宝胤. 减重手术后皮肤松弛的塑形手术现状与展望[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 248-254.
[14] 李兆, 李兆鹏, 宋逸, 郭栋, 陈栋, 李宇. 腹腔镜袖状胃切除术后残胃容积的测量方案及评价[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 242-247.
[15] 中国医师协会外科医师分会肥胖代谢病综合管理与护理专家工作组, 中国医师协会外科医师分会肥胖和代谢病外科专家工作组, 中国肥胖代谢外科研究协作组. 肥胖代谢外科医学科普中国专家共识(2024 版)[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 227-234.
阅读次数
全文


摘要