切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (02) : 200 -204. doi: 10.3877/cma.j.issn.2096-1537.2018.02.018

所属专题: 文献

综述

P(v-a)CO2/C(a-v)O2 ratio在休克复苏中的临床应用进展
何怀武1, 张瑞1, 隆云1, 刘大为1,()   
  1. 1. 100730 中国医学科学院 北京协和医学院 北京协和医院重症医学科
  • 收稿日期:2017-12-03 出版日期:2018-05-28
  • 通信作者: 刘大为
  • 基金资助:
    北京优秀人才青年骨干项目支持(2015000020124G072)

Clinical application progress of the P(v-a)CO2/C(a-v)O2 ratio in resuscitation of circulatory shock

Huaiwu He1, Rui Zhang1, Yun Long1, Dawei liu1,()   

  1. 1. Department of Critical Care Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
  • Received:2017-12-03 Published:2018-05-28
  • Corresponding author: Dawei liu
  • About author:
    Corresponding author: Liu Dawei, Email:
引用本文:

何怀武, 张瑞, 隆云, 刘大为. P(v-a)CO2/C(a-v)O2 ratio在休克复苏中的临床应用进展[J]. 中华重症医学电子杂志, 2018, 04(02): 200-204.

Huaiwu He, Rui Zhang, Yun Long, Dawei liu. Clinical application progress of the P(v-a)CO2/C(a-v)O2 ratio in resuscitation of circulatory shock[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(02): 200-204.

静脉-动脉二氧化碳分压差/动脉-静脉氧含量差[P(v-a)CO2/C(a-v)O2 ratio]通过计算氧的消耗量和二氧化碳的生成量的比率获得,其本质是反映机体呼吸商。在无氧代谢时只有CO2的产生,却无O2的消耗,此时呼吸商趋向无限大。因此,当机体存在无氧代谢时,可出现P(v-a)CO2/C(a-v)O2 ratio增高。近来,应用P(v-a)CO2/C(a-v)O2 ratio作为识别机体是否存在无氧代谢的指标在休克复苏中受到广泛关注。

the P(v-a)CO2/C(a-v)O2 ratio was calculated from the ratio of the CO2 production and O2 consumption, which reflect the respiratory quotient. The respiratory quotient would be infinite in the case of the anaerobic metabolism during which only CO2 was produced without the consumption of O2. Recently, attention is paid to use the P(v-a)CO2/C(a-v)O2 ratio to detect anaerobic metabolism in the resuscitation of the circulatory shock.

表1 Ratio相关的临床研究总结
[1]
Shoemaker WC. Oxygen transport and oxygen metabolism in shock and critical illness. Invasive and noninvasive monitoring of circulatory dysfunction and shock [J]. Crit Care Clin, 1996, 12(4): 939-969.
[2]
Rivers E,Nguyen B,Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock [J]. New Engl J Med, 2001, 345(19): 1368-1377.
[3]
Rusconi AM,Bossi I,Lampard JG, et al. Early goal-directed therapy vs usual care in the treatment of severe sepsis and septic shock: a systematic review and meta-analysis [J]. Intern Emerg Med, 2015, 10(6): 731-743.
[4]
Jaehne AK,Salem D,Domecq Garces J. Early goal-directed therapy in the treatment of sepsis: the times have changed but not the therapy and benefit to patients [J]. Intens Care Med, 2015, 41(9): 1727-1728.
[5]
Marik PE. The demise of early goal-directed therapy for severe sepsis and septic shock [J]. Acta Anaesthesiol Scand, 2015, 59(5): 561-567.
[6]
He HW,Liu DW. Central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio: An experimental model or a bedside clinical tool? [J]. J Crit Care, 2016, 35: 219-220.
[7]
Gutierrez G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia [J]. Amer J Respir Crit Care Med, 2004, 169(4): 525-533.
[8]
Jakob SM,Groeneveld AB,Teboul JL. Venous-arterial CO2 to arterial-venous O2 difference ratio as a resuscitation target in shock states? [J]. Intensive Care Med, 2015, 41(5): 936-938.
[9]
Teboul JL,Scheeren T. Understanding the Haldane effect [J]. Intensive Care Med, 2017, 43(1): 91-93.
[10]
Saludes P,Proença L,Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference and the effect of venous hyperoxia: A limiting factor, or an additional marker of severity in shock? [J]. J Clin Monit Comput, 2017, 31(6): 1203-1211.
[11]
He HW,Liu DW,Ince C. Understanding elevated Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio in venous hyperoxia condition [J]. J Clin Monit Comput, 2017, 31(6): 1321-1323.
[12]
Cuschieri J,Rivers EP,Donnino MW, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index [J]. Intensive Care Med, 2005, 31(6): 818-822.
[13]
Mesquida J,Saludes P,Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock [J]. Crit Care, 2015, 19: 126.
[14]
Mekontso-Dessap A,Castelain V,Anguel N, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients [J]. Intensive Care Med, 2002, 28(3): 272-277.
[15]
Ospina-Tascon GA,Umana M,Bermudez W, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock [J]. Intensive Care Med, 2015, 41(5): 796-805.
[16]
Mallat J,Lemyze M,Meddour M, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients [J]. Annal Intens Care, 2016, 6(1): 10.
[17]
He HW,Liu DW,Long Y, et al. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation [J]. J Crit Care, 2016, 31(1): 76-81.
[18]
Gomez H,Kellum JA. Lactate in sepsis [J]. JAMA, 2015, 313(2): 194-195.
[19]
Rimachi R,Bruzzi de Carvahlo F,Orellano-Jimenez C, et al. Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock [J]. Anaesth Intensive Care, 2012, 40(3): 427-432.
[20]
Levy B,Gibot S,Franck P, et al. Relation between muscle NaK ATPase activity and raised lactate concentrations in septic shock: a prospective study [J]. Lancet, 2005, 365(9462): 871-875.
[21]
Monnet X,Julien F,Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders [J]. Crit Care Med, 2013, 41(6): 1412-1420.
[22]
Du W,Long Y,Wang XT, et al. The use of the ratio between the veno-arterial carbon dioxide difference and the arterial-venous oxygen difference to guide resuscitation in cardiac surgery patients with hyperlactatemia and normal central venous oxygen saturation [J]. Chin Med J, 2015, 128(10): 1306-1313.
[23]
Mallat J,Lemyze M,Tronchon L, et al. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock [J]. World J Crit Care Med, 2016, 5(1): 47-56.
[24]
Ospina-Tascon GA,Umana M,Bermudez WF, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? [J]. Intensive Care Med, 2016, 42(2): 211-221.
[25]
De Backer D. VO2/DO2 relationship: how to get rid of methodological pitfalls? [J]. Intensive Care Med, 2000, 26(12): 1719-1722.
[26]
Waxman K,Annas C,Daughters K, et al. A method to determine the adequacy of resuscitation using tissue oxygen monitoring [J]. J Trauma, 1994, 36(6): 852-856; discussion 856-858.
[27]
Yu M,Morita SY,Daniel SR, et al. Transcutaneous pressure of oxygen: a noninvasive and early detector of peripheral shock and outcome [J]. Shock, 2006, 26(5): 450-456.
[28]
Yu M,Chapital A,Ho HC, et al. A prospective randomized trial comparing oxygen delivery versus transcutaneous pressure of oxygen values as resuscitative goals [J]. Shock, 2007, 27(6): 615-622.
[29]
He HW,Liu DW,Long Y, et al. The transcutaneous oxygen challenge test: a noninvasive method for detecting low cardiac output in septic patients [J]. Shock, 2012, 37(2): 152-155.
[30]
He HW,Liu DW,Long Y, et al. The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation [J]. Crit Care, 2013, 17(3): R116.
[31]
Mari A,Vallee F,Bedel J, et al. Oxygen challenge test in septic shock patients: prognostic value and influence of respiratory status [J]. Shock, 2014, 41(6): 504-509.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[3] 龚利缘, 应利君, 吕铁, 李川吉. 平均动脉压对不同乳酸清除率脓毒性休克患者预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 37-42.
[4] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[5] 龚茂迪, 李涛, 陈伟, 徐述雄. 一例长期口服糖皮质激素患者在经皮肾镜碎石取石术后反复发热的管理经验[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 284-287.
[6] 康慧方, 孙莉, 田应选, 尚文丽, 刘凌华, 霍树芬. HSP90α在老年恶性胸腔积液中的诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 257-259.
[7] 方可, 笪欢欢, 汪君, 孙瑞祥, 王涛, 李阳, 江海娇, 鲁卫华. ECMO联合肾上腺切除救治妊娠期嗜铬细胞瘤并儿茶酚胺心肌病一例并文献回顾[J]. 中华重症医学电子杂志, 2023, 09(03): 304-310.
[8] 蔡荇, 张文娟, 於江泉, 郑瑞强. 血浆肝素结合蛋白在脓毒症早期诊断和预后预测中的应用[J]. 中华重症医学电子杂志, 2023, 09(02): 168-177.
[9] 崔广清, 葛玲玉. PiCCO指导心功能不全合并脓毒症休克患者精准救治的效果[J]. 中华重症医学电子杂志, 2023, 09(02): 185-190.
[10] 吴宗盛, 谢剑锋, 邱海波. 2021版拯救脓毒症运动指南:早期复苏的八大“陷阱”[J]. 中华重症医学电子杂志, 2023, 09(01): 14-18.
[11] 于洋, 刘孝洁, 王丽娟, 高宇晨, 丁瑶, 敖虎山. 新冠肺炎常态化条件下心肺复苏培训模式初探[J]. 中华临床医师杂志(电子版), 2023, 17(04): 483-486.
[12] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[13] 孔祥增, 李艳敏, 孟莉, 刘娜, 邱会卿, 王晓. S100β、缺血修饰白蛋白、热休克蛋白70在脑小血管病认知功能损害中的表达及相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(01): 58-62.
[14] 王瑶, 杨艳敏. 伴大量心包积液及可逆性左心室流出道梗阻的应激性心肌病一例[J]. 中华心脏与心律电子杂志, 2023, 11(01): 50-53.
[15] 梅冬兰, 凌受毅, 梅冰, 邵光亮, 孙志辉. 院外自动心肺复苏机序贯骨髓腔输液在抢救呼吸心跳骤停患者中的应用价值[J]. 中华卫生应急电子杂志, 2023, 09(03): 159-162.
阅读次数
全文


摘要