切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 258 -263. doi: 10.3877/cma.j.issn.2096-1537.2019.03.010

所属专题: 重症医学 文献

综述

间充质干细胞定向分化的调控机制在急性呼吸窘迫综合征治疗中的研究进展
张曦文1, 郭凤梅1, 邱海波1,()   
  1. 1. 210009 南京,东南大学附属中大医院重症医学科
  • 收稿日期:2018-03-13 出版日期:2019-08-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金面上项目(81471843、81571874、81671892、81670074); 江苏省医学重点学科项目(ZDXKA2016025); 中央高校基本科研业务费专项资金、江苏省普通高校研究生科研创新计划资助项目(KYZZ16_0129)

Mechanisms of directional differentiation of mesenchymal stem cells in ARDS

Xiwen Zhang1, Fengmei Guo1, Haibo Qiu1,()   

  1. 1. Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2018-03-13 Published:2019-08-28
  • Corresponding author: Haibo Qiu
  • About author:
    Corresponding author: Qiu Haibo, Email:
引用本文:

张曦文, 郭凤梅, 邱海波. 间充质干细胞定向分化的调控机制在急性呼吸窘迫综合征治疗中的研究进展[J]. 中华重症医学电子杂志, 2019, 05(03): 258-263.

Xiwen Zhang, Fengmei Guo, Haibo Qiu. Mechanisms of directional differentiation of mesenchymal stem cells in ARDS[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(03): 258-263.

急性呼吸窘迫综合征(ARDS)是临床常见危重症。其主要病理特点为弥漫性肺泡上皮细胞和毛细血管内皮细胞受损、通透性增加所导致的肺间质水肿。促进肺泡上皮细胞的有效修复是ARDS治疗的关键靶点之一。间充质干细胞(MSC)具有多向分化潜能,能修复损伤肺组织结构,保护肺功能。本文对相关文章进行回顾,以深入了解MSC定向分化的调控机制及影响因素,为ARDS的治疗提供进一步的研究方向。

Acute respiratory distress syndrome (ARDS) is a syndrome of acute hypoxemic respiratory failure. The pathologic hallmark of ARDS is diffuse alveolar damage, with an injury to both capillary endothelial and alveolar epithelial. Effective repair of alveolar epithelial cells is one of the key therapeutic targets of the treatment for ARDS. With the potential of multi-directional differentiation into endothelial and epithelial cells, mesenchymal stem cells (MSCs) can restore lung structure and protect pulmonary function. The current review focuses on the mechanisms and regulatory factors that influent MSC-directed differentiation and provides further research directions in the treatment of ARDS.

图1 MSC定向分化的调控机制示意图
1
Laffey JG, Matthay MA. Fifty years of research in ARDS. cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value [J]. Am J Respir Crit Care Med, 2017, 196(3): 266-273.
2
Huppert LA, Matthay MA. Alveolar fluid clearance in pathologically relevant conditions: in vitro and in vivo models of acute respiratory distress syndrome [J]. Front Immunol, 2017, 8: 371.
3
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis [J]. Lancet Respir Med, 2014, 2(12): 1016-1026.
4
Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung [J]. Am J Respir Cell Mol Biol, 2005, 33(2): 145-152.
5
Serikov VB, Popov B, Mikhailov VM, et al. Evidence of temporary airway epithelial repopulation and rare clonal formation by BM-derived cells following naphthalene injury in mice [J]. Anat Rec (Hoboken), 2007, 290(9): 1033-1045.
6
Cai SX, Liu AR, Chen S, et al. The orphan receptor tyrosine kinase ROR2 facilitates MSCs to repair lung injury in ARDS animal model [J]. Cell Transplant, 2016, 25(8): 1561-1574.
7
Gupta N, Su X, Popov B, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice [J]. J Immunol, 2007, 179(3): 1855-1863.
8
Mei SH, McCarter SD, Deng Y, et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1 [J]. PLoS Med, 2007, 4(9): e269.
9
McAnulty RJ. Fibroblasts and myofibroblasts: their source, function and role in disease [J]. Int J Biochem Cell Biol, 2007, 39(4): 666-671.
10
Harris RG, Herzog EL, Bruscia EM, et al. Lack of a fusion requirement for development of bone marrow-derived epithelia [J]. Science, 2004, 305(5680): 90-93.
11
Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J]. Nature, 2003, 425(6961): 968-973.
12
Neuringer IP, Randell SH. Stem cells and repair of lung injuries [J]. Respiratory research, 2004, 5: 6.
13
Piscaglia AC, Novi M, Campanale M, et al. Stem cell-based therapy in gastroenterology and hepatology [J]. Minim Invasive Ther Allied Technol, 2008, 17(2): 100-118.
14
Poulsom R, Alison MR, Cook T, et al. Bone marrow stem cells contribute to healing of the kidney [J]. J Am Soc Nephrol, 2003, 14(Suppl 1): S48-54.
15
Surani MA. Reprogramming of genome function through epigenetic inheritance [J]. Nature, 2001, 414(6859): 122-128.
16
Preston SL, Alison MR, Forbes SJ, et al. The new stem cell biology: something for everyone [J]. Mol Pathol, 2003, 56(2): 86-96.
17
Moore KA, Lemischka IR. Stem cells and their niches [J]. Science, 2006, 311(5769): 1880-1885.
18
Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow [J]. Nature, 2002, 418(6893): 41-49.
19
Yun DH, Song HY, Lee MJ, et al. Thromboxane A2 modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells [J]. Exp Mol Med, 2009, 41(1): 17-24.
20
Wu FT, Stefanini MO, Mac Gabhann F, et al. A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap [J]. PloS one, 2009, 4(4): e5108.
21
Moioli EK, Clark PA, Chen M, et al. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues [J]. PLoS One, 2008, 3(12): e3922.
22
Rangappa S, Entwistle JW, Wechsler AS, et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype [J]. J Thorac Cardiovasc Surg, 2003, 126(1): 124-132.
23
Liu AR, Liu L, Chen S, et al. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type Ⅱ alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro [J]. J Cell Physiol, 2013, 228(6): 1270-1283.
24
Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix [J]. Development, 1993, 117(4): 1183-1198.
25
Ramirez-Bergeron DL, Simon MC. Hypoxia-inducible factor and the development of stem cells of the cardiovascular system [J]. Stem Cells, 2001, 19(4): 279-286.
26
Kanichai M, Ferguson D, Prendergast PJ, et al. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1 alpha [J]. J Cell Physiol, 2008, 216(3): 708-715.
27
Koong AC, Denko NC, Hudson KM, et al. Candidate genes for the hypoxic tumor phenotype [J]. Cancer Res, 2000, 60(4): 883-887.
28
Kajita M, Itoh Y, Chiba T, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration [J]. J Cell Biol, 2001, 153(5): 893-904.
29
Ugland H, Boquest AC, Naderi S, et al. cAMP-mediated induction of cyclin E sensitizes growth-arrested adipose stem cells to DNA damage-induced apoptosis [J]. Mol Biol Cell, 2008, 19(12): 5082-5092.
30
Nakamura T, Shiojima S, Hirai Y, et al. Temporal gene expression changes during adipogenesis in human mesenchymal stem cells [J]. Biochem Biophys Res Commun, 2003, 303(1): 306-312.
31
Kohler C, Bell AW, Bowen WC, et al. Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration [J]. Hepatology, 2004, 39(4): 1056-1065.
32
Shafritz DA, Oertel M, Menthena A, et al. Liver stem cells and prospects for liver reconstitution by transplanted cells [J]. Hepatology, 2006, 43(2 Suppl 1): S89-98.
33
Popov BV, Serikov VB, Petrov NS, et al. Lung epithelial cells induce endodermal differentiation in mouse mesenchymal bone marrow stem cells by paracrine mechanism [J]. Tissue Eng, 2007, 13(10): 2441-2450.
34
Wang Y, Sun Z, Qiu X, et al. Roles of Wnt/beta-catenin signaling in epithelial differentiation of mesenchymal stem cells [J]. Biochem Biophys Res Commun, 2009, 390(4): 1309-1314.
35
Cai SX, Liu AR, Chen S, et al. Activation of Wnt/beta-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice [J]. Stem Cell Res Ther, 2015, 6: 65.
36
Dennis JE, Charbord P. Origin and differentiation of human and murine stroma [J]. Stem Cells, 2002, 20(3): 205-214.
37
Hsu J, Sage J. Novel functions for the transcription factor E2F4 in development and disease [J]. Cell Cycle, 2016, 15(23): 3183-3190.
38
Mushtaq M, Gaza HV, Kashuba EV. Role of the RB-Interacting Proteins in Stem Cell Biology [J]. Adv Cancer Res, 2016, 131: 133-157.
39
Gaspar-Maia A, Alajem A, Polesso F, et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells [J]. Nature, 2009, 460(7257): 863-868.
40
Tremain N, Korkko J, Ibberson D, et al. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages [J]. Stem Cells, 2001, 19(5): 408-418.
41
Hamam D, Ali D, Kassem M, et al. MicroRNAs as regulators of adipogenic differentiation of mesenchymal stem cells [J]. Stem Cells Dev, 2015, 24(4): 417-425.
42
Eskildsen T, Taipaleenmaki H, Stenvang J, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo [J]. Proc Natl Acad Sci U S A, 2011, 108(15): 6139-6144.
43
Sekar D, Saravanan S, Karikalan K, et al. Role of microRNA 21 in mesenchymal stem cell (MSC) differentiation: a powerful biomarker in MSCs derived cells [J]. Curr Pharm Biotechnol, 2015, 16(1): 43-48.
44
Tye CE, Gordon JA, Martin-Buley LA, et al. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? [J]. J Cell Physiol, 2015, 230(3): 526-534.
[1] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[4] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[5] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[6] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[7] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[8] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[9] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[10] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[11] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要