切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (02) : 211 -214. doi: 10.3877/cma.j.issn.2096-1537.2020.02.021

所属专题: 重症医学 文献

综述

肺上皮细胞与巨噬细胞来源的胞外囊泡在肺部炎症及损伤中的作用
刘旭1, 薛明1, 邱海波1,()   
  1. 1. 210009 南京,东南大学附属中大医院重症医学科
  • 收稿日期:2019-12-24 出版日期:2020-05-28
  • 通信作者: 邱海波
  • 基金资助:
    重点研发计划专项资金(社会发展)项目(BE2019749); 江苏省社会发展专项(BE2018743); 国家自然科学基金面上项目(81571847); 国家自然科学基金重点项目(81930058); 国家科技重大专项课题(2017ZX10103004)

Role of extracellular vesicles from lung epithelial cells and macrophages in lung inflammatory diseases

Xu Liu1, Ming Xue1, Haibo Qiu1,()   

  1. 1. Department of Critical Care Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China
  • Received:2019-12-24 Published:2020-05-28
  • Corresponding author: Haibo Qiu
  • About author:
    Corresponding author: Qiu Haibo, Email:
引用本文:

刘旭, 薛明, 邱海波. 肺上皮细胞与巨噬细胞来源的胞外囊泡在肺部炎症及损伤中的作用[J/OL]. 中华重症医学电子杂志, 2020, 06(02): 211-214.

Xu Liu, Ming Xue, Haibo Qiu. Role of extracellular vesicles from lung epithelial cells and macrophages in lung inflammatory diseases[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(02): 211-214.

近年来,细胞外囊泡(EVs)在肺正常生理过程及病理变化中的作用得到广泛关注。肺内各类细胞均可分泌EVs,其中包裹的分子,如核酸、蛋白质等在细胞间交流沟通中具有不同的调节作用。而越来越多的证据提示,肺上皮细胞及巨噬细胞通过EVs交互在维持肺内微环境稳定和介导肺免疫炎症反应的发生发展中扮演着不可忽视的角色。本文就肺上皮细胞和巨噬细胞来源的EVs在肺部炎症及损伤的相关研究进行综述。

Increasing attention has been paid to the emerging role of extracellular vesicles (EVs) in lung homeostasis and pathologic conditions recently. Various cells can release EVs, and they can encapsulate different kinds of molecules, such as nucleic acids and proteins into EVs, as modulators of intercellular communications. More and more evidence demonstrates an important role for EVs in maintaining lung microenvironment homeostasis and mediating transmission of inflammatory signals between lung epithelial cells and macrophages. The purpose of this review is to discuss the role of EVs from lung epithelial cells and macrophages in lung inflammatory diseases.

1
Haggadone MD, Peters-Golden M. Microenvironmental influences on extracellular vesicle-mediated communication in the lung[J]. Trends Mol Med, 2018, 24: 963-975.
2
Van der pol E, Böing AN, Harrison P, et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacol Rev, 2012, 64(3): 676-705.
3
Lee H, Zhang D, Wu JX, et al. Lung Epithelial cell-derived microvesicles regulate macrophage migration via microRNA-17/221-Induced Integrin-β recycling[J]. J Immunol, 2017, 199(4): 1453-1464.
4
Kulshreshtha A, Ahmad T, Agrawal A, et al. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation[J]. J Allergy Clin Immunol, 2013, 131(4): 1194-1203.
5
Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J]. J Extracell Vesicles, 2015, 4: 283-288.
6
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.
7
Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Bio, 2018, 20(3): 332-343.
8
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake[J]. 2014 Aug 4: 3.
9
Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: From biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673.
10
Shah R, Patel T, Freedman JE. Circulating Extracellular Vesicles in Human Disease[J]. N Engl J Med, 2018, 379(22): 958-966.
11
Kim HJ, Kim YS, Kim KH, et al. The microbiome of the lung and its extracellular vesicles in nonsmokers, healthy smokers and COPD patients[J]. Exp Mol Med, 2017, 49(4): e316.
12
Psaila B, Lyden D. The metastatic niche: adapting the foreign soil[J]. Nat Rev Cancer, 2009, 9(4): 285-293.
13
Chen L, Brigstock DR. Cellular or Exosomal microRNAs Associated with CCN Gene Expression in Liver Fibrosis[J]. Methods Mol Biol, 2017, 1489: 465-480.
14
Crystal RG, Randell SH, Engelhardt JF, et al. Airway epithelial cells: current concepts and challenges[J]. Proc Am Thorac Soc, 2008, 5(7): 772-777.
15
Bastarache JA, Fremont RD, Kropski JA, et al. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1035-1041.
16
Yamamoto K, Ferrari JD, Cao Y, et al. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumonia[J]. J Immunol, 2012, 189(5): 2450-2459.
17
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity[J]. Nat Immunol, 2015, 16(1): 27-35.
18
Kesimer M, Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering[J]. Methods, 2015, 87: 59-63.
19
Kesimer M, Scull M, Brighton B, et al. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense[J]. FASEB J, 2009, 23(6): 1858-1868.
20
Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice[J]. J Exp Med, 1989, 170(2): 499-509.
21
Ismail N, Wang Y, Dakhlallah D, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer[J]. Blood, 2013, 121(6): 984-995.
22
Speth JM, Bourdonnay E, Penke LR, et al. Alveolar Epithelial Cell-Derived Prostaglandin E2 Serves as a Request Signal for Macrophage Secretion of Suppressor of Cytokine Signaling 3 during Innate Inflammation[J]. J Immunol, 2016, 196(12): 5112-5120.
23
Bourdonnay E, Zasłona Z, Penke LR, et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling[J]. J Exp Med, 2015, 212(5): 729-742.
24
Fujita Y, Kosaka N, Araya J, et al. Extracellular vesicles in lung microenvironment and pathogenesis[J]. Trends Mol Med, 2015, 21(9): 533-542.
25
Han CZ, Juncadella IJ, Kinchen JM, et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation[J]. Nature, 2016, 539(7630): 570-574.
26
Moon HG, Cao Y, Yang J, et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway[J]. 2015, 6: e2016
27
Lee H, Zhang D, Laskin DL, et al. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation[J]. J Immunol, 2018, 201(5): 1500-1509.
28
Lee H, Zhang D, Zhu Z, et al. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs[J]. Sci Rep, 2016, 6: 35250.
29
Lee H, Groot M, Pinilla-Vera M, et al. Identification of miRNA-rich vesicles in bronchoalveolar lavage fluid: Insights into the function and heterogeneity of extracellular vesicles[J]. J Control Release, 2019, 294: 43-52.
30
Szul T, Bratcher PE, Fraser KB, et al. Toll-like receptor 4 engagement mediates prolyl endopeptidase release from airway epithelia via exosomes[J]. Am J Respir Cell Mol Biol, 2016, 54(3): 359-369.
31
Soni S, Wilson MR, O′Dea KP, et al. Alveolar macrophage-derived microvesicles mediate acute lung injury[J]. Thorax, 2016, 71(11): 1020-1029.
32
Neri T, Armani C, Pegoli A, et al. Role of NF-κB and PPAR-γ in lung inflammation induced by monocyte-derived microparticles[J]. Eur Respir J, 2011, 37(6): 1494-1502.
33
Zhu Z, Zhang D, Lee H, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222[J]. J Leukoc Biol, 2017, 101(6): 1349-1359.
34
Wang D, Morales JE, Calame DG, et al. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice[J]. Mol Ther, 2010, 18(3): 625-634.
35
Quan Y, Wang Z, Gong L, et al. Exosome miR-371b-5p promotes proliferation of lung alveolar progenitor type II cells by using PTEN to orchestrate the PI3K/Akt signaling[J]. Stem Cell Res Ther, 2017, 8(1): 138.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[3] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 中华医学会器官移植学分会. 中国肺移植气道并发症临床诊疗指南(2024版)[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 266-274.
[6] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[7] 杨轲, 丁增巴姆, 马静, 李盼盼, 陈婷. 全程无缝隙肺康复训练在单孔胸腔镜肺叶切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 801-804.
[8] 张春玉, 陈海云, 肖忠萍, 罗琴, 潘运昌. 血清NT-proBNP 预测肺栓塞心脏功能障碍的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 805-808.
[9] 张燕, 杨跃青, 邱峥. IgG 联合血清细胞因子对肺结核并发慢性肺曲霉菌病的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 809-812.
[10] 胡菊英, 李银华, 洪兰, 王宏勇, 丁先军, 李承美, 谭心海. 儿童感染大叶性肺炎与支气管肺炎临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 813-816.
[11] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[12] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[15] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?