切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (02) : 211 -214. doi: 10.3877/cma.j.issn.2096-1537.2020.02.021

所属专题: 文献

综述

肺上皮细胞与巨噬细胞来源的胞外囊泡在肺部炎症及损伤中的作用
刘旭1, 薛明1, 邱海波1,()   
  1. 1. 210009 南京,东南大学附属中大医院重症医学科
  • 收稿日期:2019-12-24 出版日期:2020-05-28
  • 通信作者: 邱海波
  • 基金资助:
    重点研发计划专项资金(社会发展)项目(BE2019749); 江苏省社会发展专项(BE2018743); 国家自然科学基金面上项目(81571847); 国家自然科学基金重点项目(81930058); 国家科技重大专项课题(2017ZX10103004)

Role of extracellular vesicles from lung epithelial cells and macrophages in lung inflammatory diseases

Xu Liu1, Ming Xue1, Haibo Qiu1,()   

  1. 1. Department of Critical Care Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China
  • Received:2019-12-24 Published:2020-05-28
  • Corresponding author: Haibo Qiu
  • About author:
    Corresponding author: Qiu Haibo, Email:
引用本文:

刘旭, 薛明, 邱海波. 肺上皮细胞与巨噬细胞来源的胞外囊泡在肺部炎症及损伤中的作用[J]. 中华重症医学电子杂志, 2020, 06(02): 211-214.

Xu Liu, Ming Xue, Haibo Qiu. Role of extracellular vesicles from lung epithelial cells and macrophages in lung inflammatory diseases[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(02): 211-214.

近年来,细胞外囊泡(EVs)在肺正常生理过程及病理变化中的作用得到广泛关注。肺内各类细胞均可分泌EVs,其中包裹的分子,如核酸、蛋白质等在细胞间交流沟通中具有不同的调节作用。而越来越多的证据提示,肺上皮细胞及巨噬细胞通过EVs交互在维持肺内微环境稳定和介导肺免疫炎症反应的发生发展中扮演着不可忽视的角色。本文就肺上皮细胞和巨噬细胞来源的EVs在肺部炎症及损伤的相关研究进行综述。

Increasing attention has been paid to the emerging role of extracellular vesicles (EVs) in lung homeostasis and pathologic conditions recently. Various cells can release EVs, and they can encapsulate different kinds of molecules, such as nucleic acids and proteins into EVs, as modulators of intercellular communications. More and more evidence demonstrates an important role for EVs in maintaining lung microenvironment homeostasis and mediating transmission of inflammatory signals between lung epithelial cells and macrophages. The purpose of this review is to discuss the role of EVs from lung epithelial cells and macrophages in lung inflammatory diseases.

1
Haggadone MD, Peters-Golden M. Microenvironmental influences on extracellular vesicle-mediated communication in the lung[J]. Trends Mol Med, 2018, 24: 963-975.
2
Van der pol E, Böing AN, Harrison P, et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacol Rev, 2012, 64(3): 676-705.
3
Lee H, Zhang D, Wu JX, et al. Lung Epithelial cell-derived microvesicles regulate macrophage migration via microRNA-17/221-Induced Integrin-β recycling[J]. J Immunol, 2017, 199(4): 1453-1464.
4
Kulshreshtha A, Ahmad T, Agrawal A, et al. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation[J]. J Allergy Clin Immunol, 2013, 131(4): 1194-1203.
5
Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J]. J Extracell Vesicles, 2015, 4: 283-288.
6
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.
7
Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Bio, 2018, 20(3): 332-343.
8
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake[J]. 2014 Aug 4: 3.
9
Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: From biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673.
10
Shah R, Patel T, Freedman JE. Circulating Extracellular Vesicles in Human Disease[J]. N Engl J Med, 2018, 379(22): 958-966.
11
Kim HJ, Kim YS, Kim KH, et al. The microbiome of the lung and its extracellular vesicles in nonsmokers, healthy smokers and COPD patients[J]. Exp Mol Med, 2017, 49(4): e316.
12
Psaila B, Lyden D. The metastatic niche: adapting the foreign soil[J]. Nat Rev Cancer, 2009, 9(4): 285-293.
13
Chen L, Brigstock DR. Cellular or Exosomal microRNAs Associated with CCN Gene Expression in Liver Fibrosis[J]. Methods Mol Biol, 2017, 1489: 465-480.
14
Crystal RG, Randell SH, Engelhardt JF, et al. Airway epithelial cells: current concepts and challenges[J]. Proc Am Thorac Soc, 2008, 5(7): 772-777.
15
Bastarache JA, Fremont RD, Kropski JA, et al. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1035-1041.
16
Yamamoto K, Ferrari JD, Cao Y, et al. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumonia[J]. J Immunol, 2012, 189(5): 2450-2459.
17
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity[J]. Nat Immunol, 2015, 16(1): 27-35.
18
Kesimer M, Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering[J]. Methods, 2015, 87: 59-63.
19
Kesimer M, Scull M, Brighton B, et al. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense[J]. FASEB J, 2009, 23(6): 1858-1868.
20
Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice[J]. J Exp Med, 1989, 170(2): 499-509.
21
Ismail N, Wang Y, Dakhlallah D, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer[J]. Blood, 2013, 121(6): 984-995.
22
Speth JM, Bourdonnay E, Penke LR, et al. Alveolar Epithelial Cell-Derived Prostaglandin E2 Serves as a Request Signal for Macrophage Secretion of Suppressor of Cytokine Signaling 3 during Innate Inflammation[J]. J Immunol, 2016, 196(12): 5112-5120.
23
Bourdonnay E, Zasłona Z, Penke LR, et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling[J]. J Exp Med, 2015, 212(5): 729-742.
24
Fujita Y, Kosaka N, Araya J, et al. Extracellular vesicles in lung microenvironment and pathogenesis[J]. Trends Mol Med, 2015, 21(9): 533-542.
25
Han CZ, Juncadella IJ, Kinchen JM, et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation[J]. Nature, 2016, 539(7630): 570-574.
26
Moon HG, Cao Y, Yang J, et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway[J]. 2015, 6: e2016
27
Lee H, Zhang D, Laskin DL, et al. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation[J]. J Immunol, 2018, 201(5): 1500-1509.
28
Lee H, Zhang D, Zhu Z, et al. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs[J]. Sci Rep, 2016, 6: 35250.
29
Lee H, Groot M, Pinilla-Vera M, et al. Identification of miRNA-rich vesicles in bronchoalveolar lavage fluid: Insights into the function and heterogeneity of extracellular vesicles[J]. J Control Release, 2019, 294: 43-52.
30
Szul T, Bratcher PE, Fraser KB, et al. Toll-like receptor 4 engagement mediates prolyl endopeptidase release from airway epithelia via exosomes[J]. Am J Respir Cell Mol Biol, 2016, 54(3): 359-369.
31
Soni S, Wilson MR, O′Dea KP, et al. Alveolar macrophage-derived microvesicles mediate acute lung injury[J]. Thorax, 2016, 71(11): 1020-1029.
32
Neri T, Armani C, Pegoli A, et al. Role of NF-κB and PPAR-γ in lung inflammation induced by monocyte-derived microparticles[J]. Eur Respir J, 2011, 37(6): 1494-1502.
33
Zhu Z, Zhang D, Lee H, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222[J]. J Leukoc Biol, 2017, 101(6): 1349-1359.
34
Wang D, Morales JE, Calame DG, et al. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice[J]. Mol Ther, 2010, 18(3): 625-634.
35
Quan Y, Wang Z, Gong L, et al. Exosome miR-371b-5p promotes proliferation of lung alveolar progenitor type II cells by using PTEN to orchestrate the PI3K/Akt signaling[J]. Stem Cell Res Ther, 2017, 8(1): 138.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[4] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[5] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[6] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[7] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[8] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[9] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[10] 张妍, 吕强, 韩笑, 王旭, 刘冉, 张利, 陈香美. 挤压综合征大鼠核心脏器肾心肺损伤特点研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 248-253.
[11] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[12] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要