切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 374 -378. doi: 10.3877/cma.j.issn.2096-1537.2020.04.005

所属专题: 重症营养 重症医学 文献

专题笔谈

线粒体DNA在创伤中的作用机制
李宣恒1, 吴秀文1, 任建安1,()   
  1. 1. 210002 南京,南京医科大学金陵临床医学院(东部战区总医院)全军普通外科研究所
  • 收稿日期:2019-12-12 出版日期:2020-11-28
  • 通信作者: 任建安
  • 基金资助:
    国家自然科学基金项目(81801971,81772052); 江苏省医学杰出人才项目(JCRCB2016006)

Mechanism of action of mitochondrial DNA in trauma

Xuanheng Li1, Xiuwen Wu1, Jian′an Ren1,()   

  1. 1. Research Institute of General Surgery, Jinling Clinical Medical College of Nanjing Medical University/General Hospital of Eastern Theater Command, PLA, Nanjing 210002, China
  • Received:2019-12-12 Published:2020-11-28
  • Corresponding author: Jian′an Ren
  • About author:
    Corresponding author: Ren Jian′an, Email:
引用本文:

李宣恒, 吴秀文, 任建安. 线粒体DNA在创伤中的作用机制[J/OL]. 中华重症医学电子杂志, 2020, 06(04): 374-378.

Xuanheng Li, Xiuwen Wu, Jian′an Ren. Mechanism of action of mitochondrial DNA in trauma[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(04): 374-378.

创伤是导致器官和组织损伤最直接的形式,也是世界范围内致死和致残的主要原因之一。创伤伴随的缺血再灌注、酸中毒、低氧血症、外科手术、失血或大量输血等均可引起继发性组织损伤。创伤导致内源性损伤相关分子模式(DAMPs)大量释放,引发全身炎症反应综合征(SIRS),进而导致脓毒症、多器官功能衰竭甚至死亡。近期研究表明,线粒体DNA(mtDNA)等线粒体来源的DAMPs在炎症反应中发挥重要作用。mtDNA的释放不仅能够诱导免疫应答、加剧炎症反应,甚至导致组织及器官损伤。本文就mtDNA在创伤中的释放机制,发挥作用的信号通路,及其与创伤的治疗策略和预后进行综述。

Trauma is the most direct form of organ and tissue damage and one of the leading causes of death and disability in the world. Secondary tissue damage can be caused by ischemia-reperfusion, acidosis, hypoxemia, surgery, hemorrhage and massive blood transfusion associated with trauma. Trauma releases a large number of endogenous damage-associated molecular patterns (DAMPs), triggers systemic inflammatory response syndrome (SIRS), sepsis, multiple organ failure, and even death. Recent studies have shown that mitochondrial-derived DAMPs such as mitochondrial DNA (mtDNA) play an important role in the inflammatory response. The release of mtDNA induces an immune response, exacerbates the inflammatory responseand causes damage to tissues and organs. This review focuses on the release mechanism and the signaling pathways of mtDNA, the relationship between mtDNA and the prognosis of trauma and therapeutic strategies for release of mtDNA intrauma.

图1 mtDNA的信号通路。释放到胞质中的mtDNA可激活TLR-9、NLRP3炎症小体和cGAS-STING信号通路
1
Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma [J]. Nat Immunol, 2018, 19(4): 327-341.
2
Vourc'h M, Roquilly A, Asehnoune K. Trauma-induced damage-associated molecular patterns-mediated remote organ injury and immunosuppression in the acutely ill patient [J]. Front Immunol, 2018, 9: 1330.
3
Lord JM, Midwinter MJ, Chen YF, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment [J]. Lancet, 2014, 384(9952): 1455-1465.
4
康焰, 唐之韵. 重症创伤:重症医学有不可替代的作用 [J/OL]. 中华重症医学电子杂志, 2016, 2(1): 26-31.
5
Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury [J]. Nature, 2010, 464(7285): 104-107.
6
West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology [J]. Nat Rev Immunol, 2017, 17(6): 363-375.
7
Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis [J]. Cell, 2015, 163(3): 560-569.
8
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity [J]. Immunity, 2015, 42(3): 406-417.
9
Rock KL, Kono H. The inflammatory response to cell death [J]. Annu Rev Pathol, 2008, 3(1): 99-126.
10
Brenner C, Galluzzi L, Kepp O, et al. Decoding cell death signals in liver inflammation [J]. J Hepatol, 2013, 59(3): 583-594.
11
Simmons JD, Lee YL, Mulekar S, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects [J]. Ann Surg, 2013, 258(4): 591-598.
12
Gu X, Yao Y, Wu G, et al. The plasma mitochondrial DNA is an independent predictor for post-traumatic systemic inflammatory response syndrome [J]. PLoS One, 2013, 8(8): e72834.
13
Mcilroy DJ, Minahan K, Keely S, et al. Reduced deoxyribonuclease enzyme activity in response to high postinjury mitochondrial DNA concentration provides a therapeutic target for Systemic Inflammatory Response Syndrome [J]. J Trauma Acute Care Surg, 2018, 85(2): 354-358.
14
Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms [J]. Mol Aspects Med, 1999, 20(3): 139-184.
15
Yue R, Xia X, Jiang J, et al. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene [J]. J Cell Physiol, 2015, 230(9): 2128-2141.
16
Wang XR, Ding R, Tao TQ, et al. Myofibrillogenesis regulator 1 rescues renal ischemia/reperfusion injury by recruitment of PI3K-dependent P-AKT to mitochondria [J]. Shock, 2016, 46(5): 531-540.
17
Caielli S, Athale S, Domic B, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus [J]. J Exp Med, 2016, 213(5): 697-713.
18
Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis [J]. Immunity, 2012, 36(3): 401-414.
19
György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles [J]. Cell Mol Life Sci, 2011, 68(16): 2667-2688.
20
Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation [J]. Blood, 2014, 124(14): 2173-2183.
21
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria [J]. Science, 2004, 303(5663): 1532-1535.
22
Mcilroy DJ, Bigland M, White AE, et al. Cell necrosis-independent sustained mitochondrial and nuclear DNA release following trauma surgery [J]. J Trauma Acute Care Surg, 2015, 78(2): 282-288.
23
Liu L, Mao Y, Xu B, et al. Induction of neutrophil extracellular traps during tissue injury: involvement of STING and toll-like receptor 9 pathways [J]. Cell Prolif, 2019, 52(3): e12579.
24
Barbalat R, Ewald SE, Mouchess ML, et al. Nucleic acid recognition by the innate immune system [J]. Annu Rev Immunol, 2011, 29(1): 185-214.
25
Wei X, Shao B, He Z, et al. Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response [J]. Cell Res, 2015, 25(2): 237-253.
26
Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics [J]. Nat Med, 2015, 21(7): 677-687.
27
Baroja-Mazo A, Martín-Sánchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response [J]. Nat Immunol, 2014, 15(8): 738-748.
28
Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing [J]. Nat Immunol, 2016, 17(10): 1142-1149.
29
Gao D, Wu J, Wu YT, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses [J]. Science, 2013, 341(6148): 903-906.
30
Yamanouchi S, Kudo D, Yamada M, et al. Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status [J]. J Crit Care, 2013, 28(6): 1027-1031.
31
Aswani A, Manson J, Itagaki K, et al. Scavenging circulating mitochondrial DNA as a potential therapeutic option for multiple organ dysfunction in trauma hemorrhage [J]. Front Immunol, 2018, 9: 891.
32
Hu Q, Ren J, Wu J, et al. Elevated levels of plasma mitochondrial DNA are associated with clinical outcome in intra-abdominal infections caused by severe trauma [J]. Surg Infect (Larchmt), 2017, 18(5): 610-618.
33
Sursal T, Stearns-Kurosawa DJ, Itagaki K, et al. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates [J]. Shock, 2013, 39(1): 55-62.
34
Martinez-Quinones PA, Mccarthy CG, Mentzer CJ, et al. Peritoneal cavity lavage reduces the presence of mitochondrial damage associated molecular patterns in open abdomen patients [J]. J Trauma Acute Care Surg, 2017, 83(6): 1062-1065.
35
Gan L, Zhong J, Zhang R, et al. The immediate intramedullary nailing surgery increased the mitochondrial DNA release that aggravated systemic inflammatory response and lung injury induced by elderly hip fracture [J]. Mediators Inflamm, 2015, 2015: 587378.
36
Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps [J]. Science, 2017, 358(6367): 1202-1206.
37
Mai SHC, Khan M, Dwivedi DJ, et al. Delayed but not early treatment with DNase reduces organ damage and improves outcome in a murine model of sepsis [J]. Shock, 2015, 44(2): 166-172.
38
Wang S, Xie T, Sun S, et al. DNase-1 treatment exerts protective effects in a rat model of intestinal ischemia-reperfusion injury [J]. Sci Rep, 2018, 8(1): 17788.
39
Yang XM, Cui L, White J, et al. Mitochondrially targeted endonuclease Ⅲ has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion [J]. Basic Res Cardiol, 2015, 110(2): 3.
40
Ma Q, Chen S, Hu Q, et al. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage [J]. Ann Neurol, 2014, 75(2): 209-219.
41
Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease [J]. Nat Med, 2016, 22(2): 146-153.
42
Hu Q, Ren J, Li G, et al. The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway [J]. Cell Death Dis, 2018, 9(3): 403.
43
Xin G, Wei Z, Ji C, et al. Metformin uniquely prevents thrombosis by inhibiting platelet activation and mtDNA release [J]. Sci Rep, 2016, 6(1): 36222.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 奚卫, 王闻卿, 刘玥, 王亚楠, 许学斌. 胃肠炎继发脓毒症感染创伤弧菌ST14514的病原学诊断与文献病例回顾分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 293-302.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[7] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[8] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[9] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[10] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[11] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[12] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[13] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要