切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 404 -410. doi: 10.3877/cma.j.issn.2096-1537.2020.04.010

所属专题: 文献

临床研究

气囊压力动态变化及预防渗漏的临床研究
王元元1, 汪明灯1,(), 程静娟1, 沈继龙1, 许铎1, 赵慧静1, 周情太1, 王春洁1   
  1. 1. 215153 南京医科大学附属苏州科技城医院重症医学科
  • 收稿日期:2019-09-25 出版日期:2020-11-28
  • 通信作者: 汪明灯
  • 基金资助:
    北京医卫健康公益基金会(YWJKJJHKYJJ-B17526); 苏州科技城医院科研预研基金项目(2019D03)

The clinical study of dynamic waveforms of intracuff pressure and prevention against leakage

Yuanyuan Wang1, Mingdeng Wang1,(), Jingjuan Cheng1, Jilong Shen1, Duo Xu1, Huijing Zhao1, Qingtai Zhou1, Chunjie Wang1   

  1. 1. Department of Critical Care Medicine, Suzhou Science & Technology Town Hospital Affiliated to Nanjing Medical University, Suzhou 215153, China
  • Received:2019-09-25 Published:2020-11-28
  • Corresponding author: Mingdeng Wang
  • About author:
    Corresponding author: Wang Mingdeng, Email:
引用本文:

王元元, 汪明灯, 程静娟, 沈继龙, 许铎, 赵慧静, 周情太, 王春洁. 气囊压力动态变化及预防渗漏的临床研究[J]. 中华重症医学电子杂志, 2020, 06(04): 404-410.

Yuanyuan Wang, Mingdeng Wang, Jingjuan Cheng, Jilong Shen, Duo Xu, Huijing Zhao, Qingtai Zhou, Chunjie Wang. The clinical study of dynamic waveforms of intracuff pressure and prevention against leakage[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(04): 404-410.

目的

动态监测气管导管气囊压力,观察不同因素作用下气囊压力的动态变化;探讨气管导管气囊渗漏的机制并指导防渗漏发生。

方法

(1)使用压力传感器连接气囊和心电监护仪,动态监测气囊压力的波形变化,并观察呼吸、吸痰、咳嗽、上调呼气末正压通气(PEEP)等情况下气囊压力的变化。(2)将不同型号气管导管插入模拟气管(注射器)内,气囊注气至压力为25~30 cmH2O(1 cmH2O=0.098 kPa);注入含有亚甲基蓝的0.9%NaCl稀释液模拟气囊上分泌物,探讨气管导管气囊渗漏的机制,指导气囊防渗漏的发生。

结果

机械通气患者气囊压力随呼吸呈现周期性变化,与平静呼吸时气囊压力相比,吸痰、咳嗽时气囊压力均显著升高,差异有统计学意义[(27.95±2.72)mmHg vs(20.32±2.08)mmHg,t=0.14,P<0.01;(28.68±2.93)mmHg vs (20.32±2.08)mmHg,t=0.03,P<0.01;1 mmHg=0.133 kPa];PEEP增加2 cmH2O以上时,气囊压力升高至(24.12±2.94)mmHg,差异有统计学意义(t=0.01,P<0.01);气囊压力不足时,压力波形呈一直线。体外渗漏模拟试验显示,与7号气管导管相比,8号气管导管气囊外径相对气管内径偏大气囊渗漏显著增加,差异有统计学意义(P<0.05);气囊外径相对气管内径偏小时,气囊上方分泌物沿气囊与气管间隙呈袖套状渗漏。气管导管呈30°~45°倾斜位时,需注意气囊上导管外壁引流管口水平面以下分泌物潴留及渗漏。

结论

气管导管气囊压力受多种因素影响而呈现动态变化,需个体化设置并动态监测、实时调整气囊压力。选择与气管相匹配的气管导管型号可降低气囊渗漏的发生。

Objective

To dynamically monitor the intracuff pressure of endotracheal tube and study the mechanism of leakage around endotracheal tube cuff to prevent the leakage.

Methods

(1) The disposable pressure sensor was used to connect endotracheal tube cuff and monitor and dynamically present the intracuff pressure waveform. The changes in intracuff pressure with breathings, sputum suctions, coughs, and upregulated PEEP were observed and recorded. (2) Different types of endotracheal tubes were inserted into the simulated tracheas (syringes) with intracuff pressure up to 25-30 cmH2O, Methylene blue diluted with normal saline was used to simulate above cuff secretions and to explore the mechanism of fluid leakage past endotracheal tubes.

Results

The intracuff pressures of patients on mechanical ventilation change periodically with breathing, compared with the cuff pressure during normal breathing [(20.32±2.08) mmHg], the cuff pressure significantly increased during sputum suction [ (27.95±2.72) mmHg] (t=0.14, P<0.01) and cough [(28.68±2.93) mmHg] (t=0.03, P<0.01); when PEEP increased by more than 2 cmH2O, the cuff pressure increased to (24.12±2.94) mmHg (t=0.01, P<0.01); when the cuff pressure was insufficient, the pressure waveform was flat. The vitro leaking simulation test showed that compared with the No.7 endotracheal tube, the leakage of No.8 endotracheal tube balloon significantly increased (P<0.05), when the outer diameter of the inflated cuff was smaller than the inner diameter of the simulated trachea, the liquid above the cuff leaked through the gap between the cuff and the trachea in a sleeve shape.

Conclusion

The intracuff pressure can be affected by various factors and need individualized settings, and dynamic monitoring and adjustment. An endotracheal tube matching the trachea may reduce the leakage past the cuff.

图1 气囊压力随呼吸动态变化曲线。图a为气囊压力随呼吸变化;图b为气囊压力呈现正弦波样改变
图2 气囊压力随吸痰、咳嗽变化。图a为吸痰时气囊压力变化;图b为咳嗽时气囊压力变化
图3 上调PEEP后气囊压力的变化。图a为气囊压力波形随呼吸呈现周期变化;图b为PEEP上调后,气囊压力随之上升
图4 气囊压力调整前后的波形。图a为气囊充气不足压力波形表现;图b为气囊充气达标时压力波形
图5 气囊外径相对偏大时气囊液体渗漏情况(30 min)。图a为7号气管导管液体渗漏;图b为8号气管导管气囊上方液体渗漏
表1 7号管与8号管液体渗漏量比较(ml,±s
图6 气囊外径相对偏小时气囊液体渗漏情况。图a为气囊外径小于注射器内径;图b为亚甲基蓝呈袖套样渗漏
图7 注射器呈45°气囊液体渗漏图
1
Huang L, Zhang L, Meng L, et al. Application study on improving the methods of endotracheal cuff pressure measurement to prevent ventilator-associated pneumonia [J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, 31(8): 1024-1027.
2
汪明灯, 王元元, 黄建安, 等. 人工气道气囊的临床应用及研究进展 [J]. 中华危重病急救医学, 2016, 28(11): 1053-1055.
3
Pisano A, Verniero L, Galdieri N, et al. Assessing the correct inflation of the endotracheal tube cuff: a larger pilot balloon increases the sensitivity of the 'finger-pressure' technique, but it remains poorly reliable in clinical practice [J]. J Clin Monit Comput, 2019, 33(2): 301-305.
4
Spapen H, Moeyersons W, Stiers W, et al. Condensation of humidified air in the inflation line of a polyurethane cuff precludes correct continuous pressure monitoring during mechanical ventilation [J]. J Anesth, 2014, 28(6): 949-951.
5
Motoyama A, Asai S, Konami H, et al. Changes in endotracheal tube cuff pressure in mechanically ventilated adult patients [J]. J Intensive Care, 2014, 2(1): 7.
6
Asai S, Motoyama A, Matsumoto Y, et al. Decrease in cuff pressure during the measurement procedure: an experimental study [J]. J Intensive Care, 2014, 2(1): 34.
7
Aeppli N, Lindauer B, Steurer MP, et al. Endotracheal tube cuff pressure changes during manual cuff pressure control manoeuvres: An in-vitro assessment [J]. Acta Anaesthesiol Scand, 2019, 63(1): 55-60.
8
陈岚, 胡爱招. 确定人工气道气囊最佳充气量的临床研究 [J]. 中华危重病急救医学, 2014, 26(5): 351-352.
9
Ortega R, Connor C, Kotova F, et al. Use of pressure transducers [J]. N Engl J Med, 2017, 376 (14): e26.
10
Zhu YP, Pan H, Sun YY, et al. The application of disposable pressure sensor in the pressure monitoring of airway airbag [J]. Chin J Nurs, 2012, 35(19): 3120-3121.
11
Kanotra SP, Propst EJ, Luginbuehl I, et al. Assessment of aspiration risk from dynamic modulation of endotracheal tube cuff pressure [J]. Laryngoscope, 2014, 124(6): 1415-1419.
12
Negro MS, Barreto G, Antonelli RQ, et al. Effectiveness of the endo-tracheal tube cuff on the trachea: physical and mechanical aspects [J]. Rev Bras Cir Cardiovasc, 2014, 29(4): 552-558.
13
汪明灯, 黄建安, 姜东辉, 等. 持续监测自动控制气囊压力预防呼吸机相关性肺炎的研究 [J]. 中华急诊医学, 2015, 24(11): 1271-1274.
14
Li Bassi G, Ranzani OT, Marti JD, et al. An in vitro study to assess determinant features associated with fluid sealing in the design of endotracheal tube cuffs and exerted tracheal pressures [J]. Crit Care Med, 2013, 41(2): 518-526.
15
Sohn HM, Baik JS, Hwang JY, et al. Devising negative pressure within intercuff space reduces microaspiration [J]. BMC Anesthesiol, 2018, 18(1): 181.
16
Pitts R, Fisher D, Sulemanji D, et al. Variables affecting leakage pastendotracheal tube cuffs: a bench study [J]. Intensive Care Med, 2010, 36(12): 2066.
17
Dat VQ, Geskus RB, Wolbers M, et al. Continuous versus intermittent endotracheal cuff pressure control for the prevention of ventilator-associated respiratory infections in Vietnam: study protocol for a randomised controlled trial [J]. Trials, 2018, 19(1): 217.
[1] 么颖, 余慕明, 刘艳存, 陈琪, 祝鹏英, 柴艳芬. 持续监测和控制人工气道气囊压力对机械通气患者呼吸机相关肺炎发生率影响的Meta分析[J]. 中华危重症医学杂志(电子版), 2016, 09(06): 389-393.
[2] 王园, 冯苹, 王露露, 沈家燕. 烧伤患者护理关键技术——体位护理、气道护理、静脉置管护理[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 276-276.
[3] 王园, 冯苹, 戴昕吭, 余婷. 重度烧伤患者人工气道护理管理的现状研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 175-178.
[4] 陈德育, 宁果豪, 袁晖, 谢菊香. 人工气道建立时机对重型颅脑损伤患者肺部感染的影响及相关因素[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(01): 76-80.
[5] 任玲, 刘威震, 王小婷, 邵丽娜. 大块树脂微渗漏研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 314-319.
[6] 孟祥杰, 陈宇江, 平雅坤, 张百泽, 王子瑞, 李觉慧, 王小竞. 金属预成冠边缘密合度及影响因素的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(02): 128-132.
[7] 王玉琳, 孙晓容. 晚期肺癌大咯血输注垂体后叶素渗漏救治成功一例[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 451-452.
[8] 张勤, 关甜晶, 龚鑫, 杨林, 蒲萍. 吸痰深度对成年人工气道患者吸痰效果影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 335-339.
[9] 王飞龙, 陈渝杰, 陈晓英, 苏红, 鲜继淑. 两种不同湿化方式对ICU机械通气患者湿化效果的Meta分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 350-354.
阅读次数
全文


摘要