切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 411 -417. doi: 10.3877/cma.j.issn.2096-1537.2020.04.011

所属专题: 文献

重症医学研究

重症医学大数据研究的基础设施与意愿调查
周翔1, 苏龙翔1, 王郝1, 李冬凯1, 陈焕1, 段美丽2, 刘健3, 欧阳彬4, 秦秉玉5, 王洪亮6, 王雪7, 徐磊8, 于湘友9, 周飞虎10, 刘娇11, 张丽娜12, 隆云1,()   
  1. 1. 100730 中国医学科学院 北京协和医学院 北京协和医院重症医学科
    2. 100050 北京友谊医院重症医学科
    3. 730000 兰州大学第一医院重症医学科
    4. 510080 广州,中山大学附属第一医院重症医学科
    5. 450003 郑州,河南省人民医院急危重症医学部
    6. 150086 哈尔滨医科大学附属第二医院重症医学科
    7. 710061 西安交通大学第一附属医院重症医学科
    8. 300170 天津市第三中心医院重症医学科
    9. 830054 乌鲁木齐,新疆医科大学第一附属医院重症医学中心
    10. 100853 北京,解放军总医院第一医学中心重症医学科
    11. 201801 上海交通大学医学院附属瑞金医院北院重症医学科
    12. 410008 长沙,中南大学湘雅医院重症医学科,国家老年疾病临床医学研究中心(湘雅)
  • 收稿日期:2020-08-06 出版日期:2020-11-28
  • 通信作者: 隆云
  • 基金资助:
    中国卫生信息与健康医疗大数据学会—重症感染镇痛镇静大数据研究专项(Z-2019-1-001); 中华国际医学交流基金会中青年医学研究专项基金项目(Z-2018-35-1902)

Infrastructure and willingness survey for big data research of critical care medicine in 2019

Xiang Zhou1, Longxiang Su1, Hao Wang1, Dongkai Li1, Huan Chen1, Meili Duan2, Jian Liu3, Bin Ouyang4, Bingyu Qin5, Hongliang Wang6, Xue Wang7, Lei Xu8, Xiangyou Yu9, Feihu Zhou10, Jiao Liu11, Lina Zhang12, Yun Long1,()   

  1. 1. Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
    2. Department of Critical Care Medicine, Beijing Friendship Hospital, Beijing 100050, China
    3. Department of Critical Care Medicine, the First Hospital of Lanzhou University, Lanzhou 730000, China
    4. Department of Intensive Care Unite, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
    5. Department of Critical Care Medicine, Henan Provincial People′s Hospital, Zhengzhou 450003, China
    6. Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
    7. Department of Critical Care Medicine, the First Hospital of Xi′an Jiaotong University, Xi′an 710061, China
    8. Department of Critical Care Medicine, Tianjin Third Central Hospital, Tianjin 300170, China
    9. Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
    10. Department of Critical Care Medicine, PLA General hospital, Beijing 100853, China
    11. Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
    12. Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha 410008, China
  • Received:2020-08-06 Published:2020-11-28
  • Corresponding author: Yun Long
  • About author:
    Corresponding author: Long Yun, Email:
引用本文:

周翔, 苏龙翔, 王郝, 李冬凯, 陈焕, 段美丽, 刘健, 欧阳彬, 秦秉玉, 王洪亮, 王雪, 徐磊, 于湘友, 周飞虎, 刘娇, 张丽娜, 隆云. 重症医学大数据研究的基础设施与意愿调查[J]. 中华重症医学电子杂志, 2020, 06(04): 411-417.

Xiang Zhou, Longxiang Su, Hao Wang, Dongkai Li, Huan Chen, Meili Duan, Jian Liu, Bin Ouyang, Bingyu Qin, Hongliang Wang, Xue Wang, Lei Xu, Xiangyou Yu, Feihu Zhou, Jiao Liu, Lina Zhang, Yun Long. Infrastructure and willingness survey for big data research of critical care medicine in 2019[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(04): 411-417.

目的

了解我国ICU大数据发展的现状,明确现存问题,为后续重症大数据平台发展和建设提供参考。

方法

通过互联网对824个重症医学专业医师进行问卷调查。问卷由中国卫生信息与健康医疗大数据学会重症医学与标准专委会设计。经过质控分析筛选,最终纳入来自598家医院的712个医师的反馈结果。

结果

所有受调查医院中,355家(59.4%)的ICU内部硬件数据整合程度欠佳,185家(30.9%)的临床信息系统可以向专科科研系统开放接口,133家(22.2%)支持数据分析结果共享。所有受调查医师中,389人(54.6%)可以投入支持系统建设及协调工作,但619人(86.9%)没有可直接用于大数据建设的科研经费支持项目开展。重症感染、重症呼吸、重症数据科学与信息学、重症血流动力学、重症神经是排名前五的亚专科兴趣,占总数的60.1%。

结论

现阶段我国ICU的信息化程度处于初级阶段。各医院对科研合作的开放程度较低,且需要更多经费和人力支持重症大数据的建设。

Objective

To understand the current situation and existing problems of big data in ICU, and to provide evidence for the subsequent development and construction of ICU big data platform in China.

Methods

Questionnaires designed by China Health Information and Medical Big Data Society & Critical Care Medicine and Standard Committee were sent to 824 intensive care doctors via internet. After quality control, results from 598 hospitals and 712 doctors were included in the final analysis.

Results

ICU internal hardware data could not be integrated was reported by 355 (59.4%) hospitals. Clinical information systems could open the interface to specialized research systems was reported by 185 (30.9%) hospitals. Analysis results could be shared was reported by 133 (22.2%) hospitals. Among all surveyed doctors, 389 (54.6%) had personnel to support the system construction and coordination, but 619 (86.9%) had no direct funds for big data construction. Infection, respiratory diseases, data science and informatics, hemodynamics, and neurological diseases were the five top research interests, accounting for 60.1% of all interests.

Conclusion

Informationization of ICU is still in its early phase in China currently. Hospitals are not open enough to research cooperation, and need more funds and manpower to support the construction of ICU big data.

图1 质量控制流程
表1 有效问卷的选择题结果
表2 各省份的有效问卷数
表3 不同级别医院间信息化比例的比较
图2 医院信息系统的整合情况
图3 医院信息系统对科研合作的开放程度
图4 跨中心数据共享的接受程度
表4 医院信息系统开放程度与科研合作意愿
图5 亚专科科研兴趣排名
1
陈德昌. 对循证医学和大数据若干问题的思考 [J/OL]. 中华重症医学电子杂志, 2019, 5(2): 207-208.
2
Cosgriff CV, Celi LA, Stone DJ. Critical care, critical data [J]. Biomed Eng Comput Biol, 2019, 10: 1179597219856564.
3
Bailly S, Meyfroidt G, Timsit JF. What's new in ICU in 2050: big data and machine learning [J]. Intensive Care Med, 2018, 44(9): 1524-1527.
4
Olchanski N, Dziadzko MA, Tiong IC, et al. Can a novel ICU data display positively affect patient outcomes and save lives? [J]. J Med Syst, 2017, 41(11): 171.
5
Saeed M, Villarroel M, Reisner AT, et al. Multiparameter intelligent monitoring in intensive care Ⅱ: a public-access intensive care unit database [J]. Crit Care Med, 2011, 39(5): 952-960.
6
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database [J]. Sci Data, 2016, 3: 160035.
7
Pollard TJ, Johnson AEW, Raffa JD, et al. The eICU collaborative research database, a freely available multi-center database for critical care research [J]. Sci Data, 2018, 5: 180178.
8
刘松桥, 黄英姿, 郭凤梅, 等. 重症医学信息化的发展与未来 [J]. 中华危重病急救医学, 2013, 25(5): 274-276.
9
Johnson AEW, Pollard TJ, Mark RG. Reproducibility in critical care: a mortality prediction case study [M]//FINALE D-V, JIM F, DAVID K, et al. Proceedings of the 2nd Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research; PMLR. 2017: 361-376.
10
Zimmerman JL. What is the future of ICUs? [J]. Qatar Med J, 2019, 2019(2): 46.
11
Mccambridge M, Jones K, Paxton H, et al. Association of health information technology and teleintensivist coverage with decreased mortality and ventilator use in critically ill patients [J]. Arch Int Med, 2010, 170(7): 648-653.
12
Levesque E, Hoti E, Azoulay D, et al. The implementation of an intensive care information system allows shortening the ICU length of stay [J]. J Clin Monit Comput, 2015, 29(2): 263-269.
13
Komorowski M, Celi LA, Badawi O, et al. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care [J]. Nat Med, 2018, 24(11): 1716-1720.
14
Kellermann AL, Jones SS. What it will take to achieve the as-yet-unfulfilled promises of health information technology [J]. Health Aff (Millwood), 2013, 32(1): 63-68.
15
Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data: opportunities and policy implications [J]. Health Aff (Millwood), 2014, 33(7): 1115-1122.
[1] 江文诗, 何湘湘. 全球及我国器官捐献发展特征分析与学科建设[J]. 中华移植杂志(电子版), 2023, 17(05): 280-286.
[2] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[3] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[4] 郑嘉裕, 吴建杰, 李小娟, 曾恒达, 李国邦, 黄炯煅, 温星桥. hsa_circ_0090923在前列腺癌中的表达及其对前列腺癌细胞增殖和迁移的调控[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 276-283.
[5] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[6] 田亚, 吴美龙, 冯晓彬. 人工智能在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 258-262.
[7] 王立涛, 刘恩瑞, 李振鲁, 吴昌亮, 高鹏. 基于SEER数据库手术后原发性阑尾肿瘤患者预后列线图构建与验证[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 404-414.
[8] 李海马, 孙恺, 刘如恩. 颅内单纯生殖细胞瘤患者的生存预测:基于SEER数据库的临床研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 283-288.
[9] 吴骎, 程毅松, 王波, 张中伟, 金晓东, 康焰. 面向未来的“新基建”——华西重症医学大数据平台建设[J]. 中华重症医学电子杂志, 2023, 09(03): 259-264.
[10] 徐静媛, 谢波, 邱海波, 杨毅. 《重症医学》课程思政建设的探索与实践[J]. 中华重症医学电子杂志, 2023, 09(03): 265-268.
[11] 刘帅, 徐珊珊, 王淑雅, 侯梦雪, 苗明月, 田莹, 张琳琳, 周建新. 成人重症患者镇痛镇静诊疗流程[J]. 中华重症医学电子杂志, 2023, 09(02): 135-142.
[12] 刁世童, 王伊帆, 董润, 彭劲民, 何淑华, 翁利, 杜斌. eSOFA,qSOFA,SIRS对于脓毒症患者预后预测价值的比较:一项基于非ICU住院患者的前瞻性队列研究[J]. 中华重症医学电子杂志, 2023, 09(02): 143-148.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[15] 姜巧, 张溱乐, 张艳玲, 余展鹏. 基于MIMIC-Ⅲ数据库的急性胰腺炎并发脓毒症风险预测模型构建与评价[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 151-157.
阅读次数
全文


摘要