切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 411 -417. doi: 10.3877/cma.j.issn.2096-1537.2020.04.011

所属专题: 文献

重症医学研究

重症医学大数据研究的基础设施与意愿调查
周翔1, 苏龙翔1, 王郝1, 李冬凯1, 陈焕1, 段美丽2, 刘健3, 欧阳彬4, 秦秉玉5, 王洪亮6, 王雪7, 徐磊8, 于湘友9, 周飞虎10, 刘娇11, 张丽娜12, 隆云1,()   
  1. 1. 100730 中国医学科学院 北京协和医学院 北京协和医院重症医学科
    2. 100050 北京友谊医院重症医学科
    3. 730000 兰州大学第一医院重症医学科
    4. 510080 广州,中山大学附属第一医院重症医学科
    5. 450003 郑州,河南省人民医院急危重症医学部
    6. 150086 哈尔滨医科大学附属第二医院重症医学科
    7. 710061 西安交通大学第一附属医院重症医学科
    8. 300170 天津市第三中心医院重症医学科
    9. 830054 乌鲁木齐,新疆医科大学第一附属医院重症医学中心
    10. 100853 北京,解放军总医院第一医学中心重症医学科
    11. 201801 上海交通大学医学院附属瑞金医院北院重症医学科
    12. 410008 长沙,中南大学湘雅医院重症医学科,国家老年疾病临床医学研究中心(湘雅)
  • 收稿日期:2020-08-06 出版日期:2020-11-28
  • 通信作者: 隆云
  • 基金资助:
    中国卫生信息与健康医疗大数据学会—重症感染镇痛镇静大数据研究专项(Z-2019-1-001); 中华国际医学交流基金会中青年医学研究专项基金项目(Z-2018-35-1902)

Infrastructure and willingness survey for big data research of critical care medicine in 2019

Xiang Zhou1, Longxiang Su1, Hao Wang1, Dongkai Li1, Huan Chen1, Meili Duan2, Jian Liu3, Bin Ouyang4, Bingyu Qin5, Hongliang Wang6, Xue Wang7, Lei Xu8, Xiangyou Yu9, Feihu Zhou10, Jiao Liu11, Lina Zhang12, Yun Long1,()   

  1. 1. Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
    2. Department of Critical Care Medicine, Beijing Friendship Hospital, Beijing 100050, China
    3. Department of Critical Care Medicine, the First Hospital of Lanzhou University, Lanzhou 730000, China
    4. Department of Intensive Care Unite, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
    5. Department of Critical Care Medicine, Henan Provincial People′s Hospital, Zhengzhou 450003, China
    6. Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
    7. Department of Critical Care Medicine, the First Hospital of Xi′an Jiaotong University, Xi′an 710061, China
    8. Department of Critical Care Medicine, Tianjin Third Central Hospital, Tianjin 300170, China
    9. Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
    10. Department of Critical Care Medicine, PLA General hospital, Beijing 100853, China
    11. Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
    12. Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha 410008, China
  • Received:2020-08-06 Published:2020-11-28
  • Corresponding author: Yun Long
  • About author:
    Corresponding author: Long Yun, Email:
引用本文:

周翔, 苏龙翔, 王郝, 李冬凯, 陈焕, 段美丽, 刘健, 欧阳彬, 秦秉玉, 王洪亮, 王雪, 徐磊, 于湘友, 周飞虎, 刘娇, 张丽娜, 隆云. 重症医学大数据研究的基础设施与意愿调查[J/OL]. 中华重症医学电子杂志, 2020, 06(04): 411-417.

Xiang Zhou, Longxiang Su, Hao Wang, Dongkai Li, Huan Chen, Meili Duan, Jian Liu, Bin Ouyang, Bingyu Qin, Hongliang Wang, Xue Wang, Lei Xu, Xiangyou Yu, Feihu Zhou, Jiao Liu, Lina Zhang, Yun Long. Infrastructure and willingness survey for big data research of critical care medicine in 2019[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(04): 411-417.

目的

了解我国ICU大数据发展的现状,明确现存问题,为后续重症大数据平台发展和建设提供参考。

方法

通过互联网对824个重症医学专业医师进行问卷调查。问卷由中国卫生信息与健康医疗大数据学会重症医学与标准专委会设计。经过质控分析筛选,最终纳入来自598家医院的712个医师的反馈结果。

结果

所有受调查医院中,355家(59.4%)的ICU内部硬件数据整合程度欠佳,185家(30.9%)的临床信息系统可以向专科科研系统开放接口,133家(22.2%)支持数据分析结果共享。所有受调查医师中,389人(54.6%)可以投入支持系统建设及协调工作,但619人(86.9%)没有可直接用于大数据建设的科研经费支持项目开展。重症感染、重症呼吸、重症数据科学与信息学、重症血流动力学、重症神经是排名前五的亚专科兴趣,占总数的60.1%。

结论

现阶段我国ICU的信息化程度处于初级阶段。各医院对科研合作的开放程度较低,且需要更多经费和人力支持重症大数据的建设。

Objective

To understand the current situation and existing problems of big data in ICU, and to provide evidence for the subsequent development and construction of ICU big data platform in China.

Methods

Questionnaires designed by China Health Information and Medical Big Data Society & Critical Care Medicine and Standard Committee were sent to 824 intensive care doctors via internet. After quality control, results from 598 hospitals and 712 doctors were included in the final analysis.

Results

ICU internal hardware data could not be integrated was reported by 355 (59.4%) hospitals. Clinical information systems could open the interface to specialized research systems was reported by 185 (30.9%) hospitals. Analysis results could be shared was reported by 133 (22.2%) hospitals. Among all surveyed doctors, 389 (54.6%) had personnel to support the system construction and coordination, but 619 (86.9%) had no direct funds for big data construction. Infection, respiratory diseases, data science and informatics, hemodynamics, and neurological diseases were the five top research interests, accounting for 60.1% of all interests.

Conclusion

Informationization of ICU is still in its early phase in China currently. Hospitals are not open enough to research cooperation, and need more funds and manpower to support the construction of ICU big data.

图1 质量控制流程
表1 有效问卷的选择题结果
表2 各省份的有效问卷数
表3 不同级别医院间信息化比例的比较
图2 医院信息系统的整合情况
图3 医院信息系统对科研合作的开放程度
图4 跨中心数据共享的接受程度
表4 医院信息系统开放程度与科研合作意愿
图5 亚专科科研兴趣排名
1
陈德昌. 对循证医学和大数据若干问题的思考 [J/OL]. 中华重症医学电子杂志, 2019, 5(2): 207-208.
2
Cosgriff CV, Celi LA, Stone DJ. Critical care, critical data [J]. Biomed Eng Comput Biol, 2019, 10: 1179597219856564.
3
Bailly S, Meyfroidt G, Timsit JF. What's new in ICU in 2050: big data and machine learning [J]. Intensive Care Med, 2018, 44(9): 1524-1527.
4
Olchanski N, Dziadzko MA, Tiong IC, et al. Can a novel ICU data display positively affect patient outcomes and save lives? [J]. J Med Syst, 2017, 41(11): 171.
5
Saeed M, Villarroel M, Reisner AT, et al. Multiparameter intelligent monitoring in intensive care Ⅱ: a public-access intensive care unit database [J]. Crit Care Med, 2011, 39(5): 952-960.
6
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database [J]. Sci Data, 2016, 3: 160035.
7
Pollard TJ, Johnson AEW, Raffa JD, et al. The eICU collaborative research database, a freely available multi-center database for critical care research [J]. Sci Data, 2018, 5: 180178.
8
刘松桥, 黄英姿, 郭凤梅, 等. 重症医学信息化的发展与未来 [J]. 中华危重病急救医学, 2013, 25(5): 274-276.
9
Johnson AEW, Pollard TJ, Mark RG. Reproducibility in critical care: a mortality prediction case study [M]//FINALE D-V, JIM F, DAVID K, et al. Proceedings of the 2nd Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research; PMLR. 2017: 361-376.
10
Zimmerman JL. What is the future of ICUs? [J]. Qatar Med J, 2019, 2019(2): 46.
11
Mccambridge M, Jones K, Paxton H, et al. Association of health information technology and teleintensivist coverage with decreased mortality and ventilator use in critically ill patients [J]. Arch Int Med, 2010, 170(7): 648-653.
12
Levesque E, Hoti E, Azoulay D, et al. The implementation of an intensive care information system allows shortening the ICU length of stay [J]. J Clin Monit Comput, 2015, 29(2): 263-269.
13
Komorowski M, Celi LA, Badawi O, et al. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care [J]. Nat Med, 2018, 24(11): 1716-1720.
14
Kellermann AL, Jones SS. What it will take to achieve the as-yet-unfulfilled promises of health information technology [J]. Health Aff (Millwood), 2013, 32(1): 63-68.
15
Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data: opportunities and policy implications [J]. Health Aff (Millwood), 2014, 33(7): 1115-1122.
[1] 王柳清, 李萍, 李小石, 刘阳, 吴鹤龄, 周国平. 以头痛、乏力首诊于神经科的鹦鹉热衣原体肺炎二例及文献复习[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(03): 176-181.
[2] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[3] 王铭池, 梁乐琦, 刘永达. 基于NHANES数据库分析血脂与肾结石之间的关系[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 485-490.
[4] 邓世君, 刘晓青, 刘权兴. 信息化管理在肺癌围手术期中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 466-468.
[5] 杨秀君, 崔梦莹, 刘水, 盛基尧, 张丹. 基于SEER数据库胰头部胰腺神经内分泌癌患者预后列线图构建与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 520-525.
[6] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[7] 向阳, 史黎炜, 肖月, 邱海波, 杨毅, 刘松桥, 邱英鹏, 张莹. 连续性肾脏替代治疗在我国五地区重症医学科的效率分析[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 358-363.
[8] 赵佳钰, 邱英鹏, 刘松桥, 杨毅, 张凌, 于湘友, 秦秉玉, 邱海波, 史黎炜, 刘克军, 蒲莹莹, 陈子扬, 赵羽西, 刘永军, 肖月. 连续性肾脏替代治疗在我国五地区重症医学科的应用现况[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 364-374.
[9] 黄立, 吴朝, 蔡君婷, 艾宇航, 徐道妙, 刘志勇, 张丽娜. 思政背景下重症医学专业教学实践探讨[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 375-378.
[10] 唐韵, 杨小博, 余愿, 舒化青, 尚游. 苯磺酸瑞马唑仑的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 389-393.
[11] 姚庆春, 魏光晨, 孟玫. 关注ICU 患者接受的非必要血液检测[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 329-333.
[12] 王妍, 李雪珠, 黄力维, 陈辉, 杨毅, 邱海波. 重症医学领域2023年SCI论文研究热点的可视化分析[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 218-226.
[13] 周润奭, 郑敏, 韩伟, 李尊柱, 何朝凯, 池熠, 隆云. 目标导向的集束化护理策略对多重耐药菌所致感染性休克患者28 d预后的影响[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 236-242.
[14] 李礼, 石学敏, 姚晨, 王舒, 石江伟. 针灸大数据发展的整体观[J/OL]. 中华针灸电子杂志, 2024, 13(02): 45-49.
[15] 徐海莉, 孙同文, 刘倩倩, 徐宏蕊, 孔羽. 区域化重症应急梯队信息化管理平台的构建及应用[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 229-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?