切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 431 -438. doi: 10.3877/cma.j.issn.2096-1537.2020.04.014

所属专题: 文献

基础研究

CVVH模式下体外循环部分的血流动力学关系理论模型推导及分析
武云珍1,()   
  1. 1. 257091 山东东营,山东省东营市人民医院重症医学科
  • 收稿日期:2018-09-11 出版日期:2020-11-28
  • 通信作者: 武云珍

Derivation and analysis of the theoretical model of hemodynamics in the extracorporeal circulation of CVVH mode

Yunzhen Wu1,()   

  1. 1. Dongying People's Hospital, Dongying 257091, China
  • Received:2018-09-11 Published:2020-11-28
  • Corresponding author: Yunzhen Wu
  • About author:
    Corresponding author: Wu Yunzhen, Email:
引用本文:

武云珍. CVVH模式下体外循环部分的血流动力学关系理论模型推导及分析[J]. 中华重症医学电子杂志, 2020, 06(04): 431-438.

Yunzhen Wu. Derivation and analysis of the theoretical model of hemodynamics in the extracorporeal circulation of CVVH mode[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(04): 431-438.

目的

使用相关定律或数学关系,推导出CVVH不同稀释模式与不同位置处的压力、流量、阻力三者之间的数学关系,以此来更好地理解CRRT的运行与压力信息的分析。

方法

根据欧姆定律、泊肃叶定律、肾小球滤过率,推导出前置换、后置换、前后置换联合三种情况下,滤器、滤膜、静脉壶、深静脉导管四个位置的相关指标间关系。

结果

1.在滤器部位:(1)滤器前后的压力差取决于流经滤器的流量及滤器阻力。(2)滤器阻力主要取决于流经滤器的混合溶液的黏滞度,及毛细小管的直径、数量。2.在滤膜部位:跨膜压(静水压)与跨膜流量(滤液)、滤膜的面积、滤膜的通透性、及滤器内的胶体渗透压有关。3.在静脉壶和静脉导管部位:滤器后压力(回路端压力)主要反应静脉壶与静脉导管的阻力。

结论

将CRRT之CVVH模式运行相关的所有数据以公式形式列出,可以更直观的分析各个因素之间的相关性,简单易懂,全面不易遗漏,有良好普及性,可以帮助临床更好地操作分析CRRT。

Objective

To better understand the operation and pressure information of CRRT by deducing the hemodynamic relationship in extracorporeal circulation of CVVH mode.

Methods

It was divided into three dilution modes and four parts in CVVH mode. The mathematical formulas were developed based on Ohm law, Poiseuille law and the physiology of GFR.

Results

1.In Filter part, the pressure difference between the pre-Filter and post-Filter is determined by the resistance and flow of Filter. 2. In Filtermembrane part: TMP is determined by the value of filtration, the area and the permeability of the membrane, and the colloid osmotic pressure in Filter. 3. In Venous-chamber and Venous-catheter part: the Post-Filter pressure is a reflection of total resistance of chamber and catheter.

Conclusion

The hemodynamic relationship in extracorporeal circulation of CVVH mode could be analyzed more clearly with the mathematical models.

图1 CVVH模式工作状态及参数界面
图2 不同置换方式模式图
表1 不同部位不同模式下压力、流量、阻力间的关系
图3 使用后的滤器
图4 CVVH各参数间关系流程图
1
武云珍, 王春亭, 任国亮, 等. 以数学公式证明随CRRT运行患者血浆电解质浓度将逐渐趋向于置换液电解质浓度[J]. 中华危重病急救医学, 2014, 26(8): 567-570.
2
武云珍, 王春亭. 连续性静脉-静脉血液滤过模式下置换液输注方式的数学解析[J]. 中华危重病急救医学, 2015, 27(5): 332-337.
3
刘景院, 李昂. 连续性肾脏替代治疗的规范与质量控制:应重视的问题[J/OL]. 中华重症医学电子杂志, 2017, 3(3): 169-173.
4
管向东, 张晔. 连续血液净化技术在重症医学科中的地位[J/OL].中华重症医学电子杂志, 2017, 3(1): 2-4.
5
赵君花, 卢燕, 丁琳, 等.3518例次CRRT治疗故障报警原因分析及指导[J]. 中国血液净化, 2014, 13(4): 353-354.
6
郭全, 戢运云, 任冬云, 等. 费森CRRT机器临床运用中常见报警及警告的处理[J]. 中国保健营养, 2014, 3(24): 1675-1676.
7
梁艳雯. 连续性床旁血液净化治疗的安全管理与护理[J]. 数理医学杂志, 2015, 28(7): 1604-1605.
8
HALL JE. GUYTON AND HALL Textbook of medical physiology[M]. 13th Edition. Philadelphia: Elsevier Saunders, 2016: 169-178.
9
林献君, 曾晓荣, 王庭槐, 等. 血流动力学//朱大年, 王庭槐. 生理学[M]. 8版. 北京: 人民卫生出版社, 2013: 118-121.
10
Zhang Z, Ni H, Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial [J]. Intensive Care Med, 2015, 41(3): 444-451.
11
Gómez Rubí JA, Sanmartin A, Gonzalez Diaz G, et al. Assessment of total pulmonary airway resistance under mechanical ventilation [J]. Crit Care Med, 1980, 8(11): 633-636.
12
Zhang B, McDonald FB, Cummings KJ, et al. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung [J]. Respir Physiol Neurobiol, 2014, 201(7): 75-83.
13
Hall JE. Guyton and hall——Textbook of medical physiology [M]. 13th Edition. Philadelphia: Elsevier Saunders, 2016: 335-345.
14
刘长金, 管又飞. 肾小球的滤过功能//朱大年, 王庭槐. 生理学[M].8版. 北京: 人民卫生出版社, 2013: 244-246.
15
罗自强. 血液的理化特性//朱大年, 王庭槐. 生理学[M]. 8版. 北京:人民卫生出版社, 2013: 56-57.
16
刘伟. 连续性血液滤过不同稀释模式和稀释比例对溶质清除效率影响的研究进展[J]. 中国血液净化, 2015, 14(3): 180-182.
17
Uchino S, Fealy N, Baldwin I, et al. Pre-dilution vs. post-dilution during continuous veno-venous hemofiltration: impact on filter life and azotemic control [J]. Nephron Clin Pract, 2003, 94(4): 94-98.
18
Swinford RD, Baid S, Pascual M. Dialysis membrane adsorption during CRRT [J]. Am J Kidney Dis, 1997, 30(4): 32-37.
19
Yamashita AC, Tomisawa N. Membrane materials for blood purification in critical care [J]. Contrib Nephrol, 2010, 166(5): 112-118.
20
Engstrom BI, Horvath JJ, Stewart JK, et al. Tunneled internal jugular hemodialysis catheters: impact of laterality and tip position on catheter dysfunction and infection rates [J]. J Vasc Interv Radiol, 2013, 24(9):1295-1302.
21
Vesely TM. Central venous catheter tip position: a continuing controversy [J]. J Vasc Interv Radiol, 2003, 14(5): 527-534.
22
Colì L, Donati G, Cianciolo G, et al. Anticoagulation therapy for the prevention of hemodialysis tunneled cuffed catheters (TCC) thrombosis [J]. J Vasc Access, 2006, 7(3): 118-122.
[1] 徐靓, 王敏佳, 钱飞, 叶聪, 龚仕金. 老年脓毒症并发急性肾损伤患者持续肾脏替代治疗启动时液体过负荷与预后的相关性[J]. 中华老年病研究电子杂志, 2020, 07(03): 1-6.
阅读次数
全文


摘要