1 |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China [J]. Nature, 2020, 579(7798): 265-269.
|
2 |
Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses--a statement of the Coronavirus Study Group [EB/OL]. (2020-02-11) [2020-06-15].
URL
|
3 |
Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus [J]. J Virol, 2020, 94(7): e00127-20.
|
4 |
高钰琪. 基于新冠肺炎病理生理机制的治疗策略 [J]. 中国病理生理杂志, 2020, 36(3): 568-572, 576.
|
5 |
Li G, He X, Zhang L, et al. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19 [J]. J Autoimmun, 2020, 102463. (2020-04-13) [2020-06-15].
URL
|
6 |
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019 [J]. J Clin Invest, 2020, 130(5): 2620‐2629.
|
7 |
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses [J]. Nat Rev Immunol, 2014, 14(1): 36-49.
|
8 |
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses [J]. J Med Virol, 2020, 92(4): 424-432.
|
9 |
Zinkernagel RM. Immunology taught by viruses [J]. Science, 1996, 271(5246): 173‐178.
|
10 |
Larsson M, Messmer D, Somersan S, et al. Requirement of mature dendritic cells for efficient activation of influenza A-specific memory CD8+T cells [J]. J Immunol, 2000, 165(3): 1182-1190.
|
11 |
Belz GT, Smith CM, Kleinert L, et al. Distinct migrating and nonmigrating dendritic cell population are involved in MHC class I-restricted antigen presentation after lung infection with virus [J]. Proc Natl Acad Sci U S A, 2004, 101(23): 8670-8675.
|
12 |
Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses [J]. Immunol Res, 2014, 59(1-3): 118-128.
|
13 |
Saha B, Jyothi Prasanna S, Chandrasekar B, et al. Gene modulation and immunoregulatory roles of interferon γ [J]. Cytokine, 2010, 50(1): 1-14.
|
14 |
Román E, Miller E, Harmsen A, et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function [J]. J Exp Med, 2002, 196(7): 957-968.
|
15 |
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China [EB/OL]. Clin Infect Dis, 2020, ciaa248. (2020-04-12) [2020-06-15].
URL
|
16 |
Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure [J]. Cell Host Microbe, 2020, 27(6): 992‐1000.
|
17 |
Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs [J]. Turk J Med Sci, 2020, 50(SI-1): 620‐632.
|
18 |
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [J]. JAMA, 2020, 323(11): 1061‐1069.
|
19 |
Lin L, Lu L, Cao W, et al. Hypothesis for potential pathogenesis of SARS- CoV-2 infection- a review of immune changes in patients with viral pneumonia [J]. Emerg Microbes Infect, 2020, 9(1): 727‐732.
|
20 |
Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury [J]. Sci China Life Sci, 2020, 63(3): 364‐374.
|
21 |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome [J]. Lancet Respir Med, 2020, 2600(20): 19-21.
|
22 |
Rockx B, Baas T, Zornetzer GA, et al. Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection [J]. J Virol, 2009, 83(14): 7062‐7074.
|
23 |
He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS [J]. J Pathol, 2006, 210(3): 288‐297.
|
24 |
Fischer DD, Kandasamy S, Paim FC, et al. Protein malnutrition alters tryptophan and angiotensin-converting enzyme 2 homeostasis and adaptive immune responses in human rotavirus-infected gnotobiotic pigs with human infant fecal microbiota transplant [J]. Clin Vaccine Immunol, 2017, 24(8): e00172.
|
25 |
Zhu H, Rhee JW, Cheng P, et al. Cardiovascular complications in patients with COVID-19: consequences of viral toxicities and host immune response [J]. Curr Cardiol Rep, 2020, 22(5): 32.
|
26 |
Nelemans T, Kikkert M. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections [J]. Viruses, 2019, 11(10): 961.
|
27 |
Fehr AR, Channappanavar R, Perlman S. Middle East respiratory syndrome: emergence of a pathogenic human coronavirus [J]. Annu Rev Med, 2017, 68: 387‐399.
|
28 |
Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology [J]. Semin immunopathol, 2016 , 38(4): 471-482.
|
29 |
Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon [J]. Curr Opin Virol, 2012, 2(3): 264-275.
|
30 |
Moore JB, June CH. Cytokine release syndrome in severe COVID-19 [J]. Science, 2020, 368(6490): 473‐474.
|
31 |
Chu H, Zhou J, Wong BH, et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways [J]. J Infect Dis, 2016, 213(6): 904‐914.
|
32 |
Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients [J]. Cell Mol Immunol, 2020, 17(5): 533‐535.
|
33 |
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China [EB/OL]. JAMA Intern Med, 2020, e200994. (2020-03-13) [2020-06-15].
URL
|
34 |
Neurath MF. Covid-19 and immunomodulation in IBD [J]. Gut, 2020, 69(7): 1335‐1342.
|
35 |
Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center's observational study [J]. World J Pediatr, 2020, 16(3): 251-259.
|
36 |
Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China [J]. N Engl J Med, 2020, 382(18): 1708‐1720.
|
37 |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J]. Lancet, 2020, 395(10223): 497-506.
|
38 |
Kong SL, Chui P, Lim B, et al. Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients [J]. Virus Res, 2009, 145(2): 260-269.
|
39 |
Fong PC, Boss DS, ap TAY, et al. A novel coronavirus associated with severe acute respiratory syndrome [J]. N Engl J Med, 2009, 361(2): 123-134.
|
40 |
Baas T, Taubenberger J, Chong P, et al. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues [J]. J Interf Cytokines Res, 2006, 26(5): 309-317.
|
41 |
Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice [J]. Cell Host Microbe, 2016, 19(2): 181‐193.
|
42 |
Dong N, Yang X, Ye L, et al. Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China[EB/OL]. BioRxiv, 2020.
URL
|
43 |
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation [J]. Science, 2020, 367(6483): 1260-1263.
|
44 |
Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia [J]. J Infect Dis, 2020, 221(11): 1762‐1769.
|
45 |
Wang W, He J, Lie P, et al. The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: disease characteristics and retrospective analysis [J]. MedRxiv, 2020.
|
46 |
Wan S, Yi Q, Fan S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) [J]. MedRxiv, 2020.
|
47 |
Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib [J]. J Microbiol Immunol Infect, 2020, S1684-1182(20)30065-7.
|
48 |
Hoe E, Anderson J, Nathanielsz J, et al. The contrasting roles of Th17 immunity in human health and disease [J]. Microbiol Immunol, 2017, 61(2): 49‐56.
|
49 |
Murdock BJ, Falkowski NR, Shreiner AB, et al. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia [J]. Infect Immun, 2012, 80(4): 1424‐1436.
|
50 |
Hotez PJ, Bottazzi ME, Corry DB. The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement [J]. Microbes Infect, 2020, 22(4): 165‐167.
|
51 |
Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate forms of coronavirus disease 2019 [J]. medRxiv, 2020, 2020.02.16.20023903.
|
52 |
Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance [J]. Cell, 2008, 133(5): 775-787.
|
53 |
Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system [J]. Nat Rev Immunol, 2010, 10(7): 490-500.
|
54 |
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) [J]. Front Immunol, 2020, 11: 827.
|
55 |
Cao Z, Liu L, Du L, et al. Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients [J]. Virol J, 2010, 7: 299.
|
56 |
Xu B, Fan CY, Wang AL, et al. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China [J]. J Infect, 2020, S0163-4453(20)30223-1.
|
57 |
Qu W, Wang Z, Hare JM, et al. Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome [J]. Stem Cells Transl Med, 2020, 10.1002/sctm.20-0146.
|
58 |
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia [J]. Aging Dis, 2020, 11(2): 216-228.
|
59 |
Liang B, Chen J, Li T, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord [J]. Medicine (Baltimore), 2020, 99(31): e21429.
|
60 |
Bari E, Ferrarotti I, Saracino L, et al. Mesenchymal stromal cell secretome for severe COVID-19 infections: premises for the therapeutic use [J]. Cells, 2020, 9(4): 924.
|
61 |
Xiong J, Bao L, Qi H, et al. Mesenchymal stem cell-based therapy for COVID-19: possibility and potential [J]. Curr Stem Cell Res Ther, 2020, 10.2174/1574888X15666200601152832.
|
62 |
Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia [J]. Med Drug Discov, 2020, 5: 100019.
|
63 |
Liu S, Peng D, Qiu H, et al. Mesenchymal stem cells as a potential therapy for COVID-19 [J]. Stem Cell Res Ther, 2020, 11(1): 169.
|
64 |
Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with mesenchymal stem cell therapy [J]. Biotechnol Rep (Amst), 2020, 26: e00467.
|
65 |
Qi K, Li N, Zhang Z, et al. Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response [J]. Cell Immunol, 2018, 326: 86‐93.
|
66 |
Naik S, Larsen SB, Cowley CJ, et al. Two to tango: dialog between immunity and stem cells in health and disease [J]. Cell, 2018, 175(4): 908‐920.
|
67 |
Razmkhah M, Abtahi S, Ghaderi A. Mesenchymal stem cells, immune cells and tumor cells crosstalk: a sinister triangle in the tumor microenvironment [J]. Curr Stem Cell Res Ther, 2019, 14(1): 43‐51.
|
68 |
郑盛, 杨涓, 唐映梅. 间充质干细胞在炎症免疫调节中的作用及应用进展 [J]. 中国组织工程研究, 2015, 19(45): 7362-7368.
|
69 |
Luu NT, McGettrick HM, Buckley CD, et al. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of cytokine-induced leukocyte recruitment [J]. Stem Cells, 2013, 31(12): 2690‐2702.
|
70 |
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system [J]. Nat Rev Immunol, 2012, 12(5): 383-396.
|
71 |
Cho KA, Lee JK, Kim YH, et al. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner [J]. Cell Mol Immunol, 2017, 14(11): 895‐908.
|
72 |
Wang D, Li SP, Fu JS, et al. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis [J]. Int J Dev Neurosci, 2016, 49: 60‐66.
|
73 |
Contreras RA, Figueroa FE, Djouad F, et al. Mesenchymal stem cells regulate the innate and adaptive immune responses dampening arthritis progression [J]. Stem Cells Int, 2016, 2016: 3162743.
|
74 |
Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia [J]. Aging Dis, 2020, 11(2): 462-464.
|
75 |
Rogers CJ, Harman RJ, Bunnell BA, et al. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients [J]. J Transl Med, 2020, 18(1): 203.
|
76 |
Ji F, Li L, Li Z, et al. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019 [J]. Stem Cells Transl Med, 2020, 9(7): 813-814.
|
77 |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor [J]. Cell, 2020, 181(2): 271-280.e8.
|
78 |
Sengupta V, Sengupta S, Lazo A, et al. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19 [J]. Stem Cells Dev, 2020, 29(12): 747-754.
|
79 |
Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: present or future [J]. Stem Cell Rev Rep, 2020, 16(3): 427-433.
|
80 |
Noone C, Kihm A, English K, et al. IFN-γ stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro [J]. Stem Cells Dev, 2013, 22(22): 3003‐3014.
|
81 |
Abumaree MH, Bahattab E, Alsadoun A, et al. Characterization of the interaction between human decidua parietalis mesenchymal stem/stromal cells and natural killer cells [J]. Stem Cell Res Ther, 2018, 9(1): 102.
|
82 |
Du Rocher B, Mencalha AL, Gomes BE, et al. Mesenchymal stromal cells impair the differentiation of CD14++ CD16- CD64+ classical monocytes into CD14++ CD16+ CD64++ activate monocytes [J]. Cytotherapy, 2012, 14(1): 12‐25.
|
83 |
Zhang B, Liu R, Shi D, et al. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population [J]. Blood, 2009, 113(1): 46‐57.
|
84 |
Spaggiari GM, Abdelrazik H, Becchetti F, et al. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2 [J]. Blood, 2009, 113(26): 6576‐6583.
|
85 |
Prockop DJ. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation [J]. Stem Cells, 2013, 31(10): 2042‐2046.
|
86 |
Abumaree MH, Al Jumah MA, Kalionis B, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages [J]. Stem Cell Rev Rep, 2013, 9(5): 620‐641.
|
87 |
Giunti D, Parodi B, Usai C, et al. Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1 [J]. Stem Cells, 2012, 30(9): 2044‐2053.
|
88 |
Melief SM, Schrama E, Brugman MH, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages [J]. Stem Cells, 2013, 31(9): 1980‐1991.
|
89 |
Cassatella MA, Mosna F, Micheletti A, et al. Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils [J]. Stem Cells, 2011, 29(6): 1001-1011.
|
90 |
Duffy MM, Ritter T, Ceredig R, et al. Mesenchymal stem cell effects on T-cell effector pathways [J]. Stem Cell Res Ther, 2011, 2(4): 34.
|
91 |
Su W, Wan Q, Huang J, et al. Culture medium from TNF-α-stimulated mesenchymal stem cells attenuates allergic conjunctivitis through multiple antiallergic mechanisms [J]. J Allergy Clin Immunol, 2015, 136(2): 423‐432.
|
92 |
Wang Y, Chen X, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications [J]. Nat Immunol, 2014, 15(11): 1009‐1016.
|
93 |
Luz-Crawford P, Djouad F, Toupet K, et al. Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation [J]. Stem Cells, 2016, 34(2): 483‐492.
|
94 |
Hu J, Zhang X, Zhou LP, et al. Immunomodulatory properties of colonic mesenchymal stem cells [J]. Immunol Lett, 2013, 156(1-2): 23‐29.
|
95 |
Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells [J]. Blood, 2007, 109(1): 228‐234.
|
96 |
Prevosto C, Zancolli M, Canevali P, et al. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction [J]. Haematologica, 2007, 92(7): 881‐888.
|
97 |
Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells [J]. Stem Cells, 2008, 26(1): 212-222.
|
98 |
Khare D, Or R, Resnick I, et al. Mesenchymal Stromal cell-derived exosomes affect mRNA expression and function of B-lymphocytes [J]. Front Immunol, 2018, 9: 3053.
|
99 |
Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation [J]. Blood, 2006, 107(4): 1484‐1490.
|
100 |
Chen D, Tang P, Liu L, et al. Bone marrow-derived mesenchymal stem cells promote cell proliferation of multiple myeloma through inhibiting T cell immune responses via PD-1/PD-L1 pathway [J]. Cell Cycle, 2018, 17(7): 858‐867.
|
101 |
Asari S, Itakura S, Ferreri K, et al. Mesenchymal stem cells suppress B-cell terminal differentiation [J]. Exp Hematol, 2009, 37(5): 604‐615.
|