切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (01) : 66 -70. doi: 10.3877/cma.j.issn.2096-1537.2021.01.011

所属专题: 文献

综述

ARDS患者自戕式肺损伤的机制和干预措施
李晗1, 陈强1, 韩旭东1,()   
  1. 1. 226000 江苏南通,南通大学附属南通第三医院重症医学科
  • 收稿日期:2020-04-29 出版日期:2021-02-28
  • 通信作者: 韩旭东
  • 基金资助:
    江苏省南通市卫健委市级重点学科支持项目(wx2017002); 江苏省南通市科技计划项目(MS12017004-2,MS12018040,XG202003-3)

Pathogenesis and Interventions of patient self-inflicted lung injury in ARDS

Han Li1, Qiang Chen1, Xudong Han1,()   

  1. 1. Department of Critical Care Medicine, Nantong Third Hospital Affiliated to Nantong University, Nantong 226000, China
  • Received:2020-04-29 Published:2021-02-28
  • Corresponding author: Xudong Han
引用本文:

李晗, 陈强, 韩旭东. ARDS患者自戕式肺损伤的机制和干预措施[J/OL]. 中华重症医学电子杂志, 2021, 07(01): 66-70.

Han Li, Qiang Chen, Xudong Han. Pathogenesis and Interventions of patient self-inflicted lung injury in ARDS[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(01): 66-70.

自主呼吸可能对ARDS患者有多种生理益处,包括减少镇静需求,保持膈肌活动和改善心血管功能。然而,剧烈的自主呼吸努力可能会加重肺损伤,2017年起,用力呼吸导致的肺损伤被称为“患者自戕性肺损伤(P-SILI)”。如何减轻ARDS P-SILI,让患者保持“安全”的自主呼吸成为临床医疗的研究热点。本文就呼吸驱动力在ARDS P-SILI中的生理和临床意义做一综述,并探讨评估呼吸驱动力的方法和改善P-SILI的措施,旨在为减轻ARDS患者的肺损伤提供理论依据,并为最新暴发的新型冠状病毒肺炎的治疗提供新思路。

Spontaneous breathing may offer multiple physiologic benefits for patients with ARDS, including decreased need for sedation, preserved diaphragm activity and improving cardiovascular function. However, vigorous spontaneous breathing efforts may aggravate lung injury. The effort-dependent lung injury has been termed 'patient self-inflicted lung injury (P-SILI)' in 2017. How to prevent P-SILI in ARDS and keep 'safe' spontaneous breathing become the research focus in clinical treatment. This article reviews the physiological and clinical significance of respiratory driving force in ARDS patients with self-inflicted lung injury, and discusses methods to evaluate respiratory driving force and measures to improve P-SILI, in order to provide theoretical basis for reducing lung injury in ARDS patients, and provide a new idea for the treatment of the latest outbreak of COVID-19.

图1 大脑曲线和通气曲线的关系(大脑神经驱动的理论要求和肺部实际通气之间的关系)。图a为健康受试者的实际通气能达到理论要求的水平,其大脑曲线与通气曲线是重叠一致的。图b为ARDS患者的代谢曲线上移,在一定的分钟通气时,ARDS患者的PaCO2高于正常水平。由于呼吸负荷增加和肌无力,PaCO2升高,分钟通气量降低,通气曲线右移;而低氧血症、酸中毒和炎症水肿等引起神经呼吸驱动的刺激增加,大脑理论要求的分钟通气量更高,大脑曲线左移,导致ARDS患者大脑曲线与通气曲线的分离
表1 呼吸驱动力监测工具
1
Morais CCA, Koyama Y, Yoshida T, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious [J]. Amer J Respir Crit Care Med, 2018, 197(10): 1285-1296.
2
Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury [J]. Crit Care Med, 2012, 40(5): 1578-1585.
3
Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing [J]. Curr Opin Crit Care, 2020, 26(1): 59-65.
4
Sasidhar M, Chatburn RL. Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis [J]. Respir Care, 2012, 57(8): 1325-1333.
5
Lalgudi Ganesan S, Jayashree M, Chandra Singhi S, et al. Airway pressure release ventilation in pediatric acute respiratory distress syndrome. a randomized controlled trial [J]. Amer J Respir Crit Care Med, 2018, 198(9): 1199-1207.
6
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure [J]. Amer J Respir Crit Care Med, 2017, 195(4): 438-442.
7
Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions [J]. Intensive Care Med, 2020, 46(4): 606-618.
8
Vaporidi K, Akoumianaki E, Telias I, et al. Respiratory drive in critically ill patients. pathophysiology and clinical implications [J]. Amer J Respir Crit Care Med, 2020, 201(1): 20-32.
9
Bhattacharya M, Kallet RH, Ware LB, et al. Negative-pressure pulmonary edema [J]. Chest, 2016, 150(4): 927-933.
10
Yoshida T, Amato MBP, Kavanagh BP, et al. Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome [J]. Curr Opin Crit Care, 2019, 25(2): 192-198.
11
Kiss T, Bluth T, Braune A, et al. Effects of positive end-expiratory pressure and spontaneous breathing activity on regional lung inflammation in experimental acute respiratory distress syndrome [J]. Crit Care Med, 2019, 47(4): e358-e365.
12
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort [J]. Amer J Respir Crit Care Med, 2017, 196(5): 590-601.
13
Piquilloud L, Beloncle F, Richard JM, et al. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study [J]. Ann Intensive Care, 2019, 9(1): 89.
14
Shi ZH, Jonkman A, de Vries H, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding [J]. Intens Care Med, 2019, 45(8): 1061-1071.
15
Pellegrini M, Hedenstierna G, Roneus A, et al. The diaphragm acts as a brake during expiration to prevent lung collapse [J]. Amer J Respir Crit Care Med, 2017, 195(12): 1608-1616.
16
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation [J]. Crit Care (London, England), 2019, 23(1): 346.
17
Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume [J]. Crit Care Med, 2016, 44(2): 282-290.
18
Doorduin J, Nollet JL, Roesthuis LH, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes [J]. Amer J Respir Crit Care Med, 2017, 195(8): 1033-1042.
19
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives [J]. Intens Care Med, 2016, 42(9): 1360-1373.
20
Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury [J]. Crit Care Med, 2013, 41(2): 536-545.
21
Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates [J]. Intens Care Med, 2017, 43(10): 1453-1463.
22
Grieco DL, Menga LS, Raggi V, et al. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure [J]. Amer J Respir Crit Care Med, 2020, 201(3): 303-312.
23
Reyher C, Muellenbach RM, Lepper PM, et al. Update extracorporeal lung support [J]. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS, 2020, 55(3): 165-177.
24
Costa R, Navalesi P, Cammarota G, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist [J]. Respir Physiol Neurobiol, 2017, 244: 10-16.
25
Dashti-Khavidaki S, Khalili H. Considerations for statin therapy in patients with COVID-19 [J]. Pharmacotherapy, 2020, 40(5): 484-486.
26
McGonagle D, Sharif K, O'Regan A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease [J]. Autoimmun Rev, 2020, 19(6): 102537.
27
Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine [J]. J Inflamm (Lond), 2019, 16: 1.
28
Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: Immunopathology in COVID-19 [J]. Arthritis Rheumatol, 2020, 72(7): 1059-1063.
29
Liu B, Bao L, Wang L, et al. Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice[J]. J Microbiol Immunol Infect, 2019:S1684-1182(18)30438-9.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[6] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[7] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[8] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[9] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[10] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[11] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[12] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[13] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[14] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[15] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?