切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (01) : 66 -70. doi: 10.3877/cma.j.issn.2096-1537.2021.01.011

所属专题: 文献

综述

ARDS患者自戕式肺损伤的机制和干预措施
李晗1, 陈强1, 韩旭东1,()   
  1. 1. 226000 江苏南通,南通大学附属南通第三医院重症医学科
  • 收稿日期:2020-04-29 出版日期:2021-02-28
  • 通信作者: 韩旭东
  • 基金资助:
    江苏省南通市卫健委市级重点学科支持项目(wx2017002); 江苏省南通市科技计划项目(MS12017004-2,MS12018040,XG202003-3)

Pathogenesis and Interventions of patient self-inflicted lung injury in ARDS

Han Li1, Qiang Chen1, Xudong Han1,()   

  1. 1. Department of Critical Care Medicine, Nantong Third Hospital Affiliated to Nantong University, Nantong 226000, China
  • Received:2020-04-29 Published:2021-02-28
  • Corresponding author: Xudong Han
引用本文:

李晗, 陈强, 韩旭东. ARDS患者自戕式肺损伤的机制和干预措施[J]. 中华重症医学电子杂志, 2021, 07(01): 66-70.

Han Li, Qiang Chen, Xudong Han. Pathogenesis and Interventions of patient self-inflicted lung injury in ARDS[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(01): 66-70.

自主呼吸可能对ARDS患者有多种生理益处,包括减少镇静需求,保持膈肌活动和改善心血管功能。然而,剧烈的自主呼吸努力可能会加重肺损伤,2017年起,用力呼吸导致的肺损伤被称为“患者自戕性肺损伤(P-SILI)”。如何减轻ARDS P-SILI,让患者保持“安全”的自主呼吸成为临床医疗的研究热点。本文就呼吸驱动力在ARDS P-SILI中的生理和临床意义做一综述,并探讨评估呼吸驱动力的方法和改善P-SILI的措施,旨在为减轻ARDS患者的肺损伤提供理论依据,并为最新暴发的新型冠状病毒肺炎的治疗提供新思路。

Spontaneous breathing may offer multiple physiologic benefits for patients with ARDS, including decreased need for sedation, preserved diaphragm activity and improving cardiovascular function. However, vigorous spontaneous breathing efforts may aggravate lung injury. The effort-dependent lung injury has been termed 'patient self-inflicted lung injury (P-SILI)' in 2017. How to prevent P-SILI in ARDS and keep 'safe' spontaneous breathing become the research focus in clinical treatment. This article reviews the physiological and clinical significance of respiratory driving force in ARDS patients with self-inflicted lung injury, and discusses methods to evaluate respiratory driving force and measures to improve P-SILI, in order to provide theoretical basis for reducing lung injury in ARDS patients, and provide a new idea for the treatment of the latest outbreak of COVID-19.

图1 大脑曲线和通气曲线的关系(大脑神经驱动的理论要求和肺部实际通气之间的关系)。图a为健康受试者的实际通气能达到理论要求的水平,其大脑曲线与通气曲线是重叠一致的。图b为ARDS患者的代谢曲线上移,在一定的分钟通气时,ARDS患者的PaCO2高于正常水平。由于呼吸负荷增加和肌无力,PaCO2升高,分钟通气量降低,通气曲线右移;而低氧血症、酸中毒和炎症水肿等引起神经呼吸驱动的刺激增加,大脑理论要求的分钟通气量更高,大脑曲线左移,导致ARDS患者大脑曲线与通气曲线的分离
表1 呼吸驱动力监测工具
1
Morais CCA, Koyama Y, Yoshida T, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious [J]. Amer J Respir Crit Care Med, 2018, 197(10): 1285-1296.
2
Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury [J]. Crit Care Med, 2012, 40(5): 1578-1585.
3
Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing [J]. Curr Opin Crit Care, 2020, 26(1): 59-65.
4
Sasidhar M, Chatburn RL. Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis [J]. Respir Care, 2012, 57(8): 1325-1333.
5
Lalgudi Ganesan S, Jayashree M, Chandra Singhi S, et al. Airway pressure release ventilation in pediatric acute respiratory distress syndrome. a randomized controlled trial [J]. Amer J Respir Crit Care Med, 2018, 198(9): 1199-1207.
6
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure [J]. Amer J Respir Crit Care Med, 2017, 195(4): 438-442.
7
Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions [J]. Intensive Care Med, 2020, 46(4): 606-618.
8
Vaporidi K, Akoumianaki E, Telias I, et al. Respiratory drive in critically ill patients. pathophysiology and clinical implications [J]. Amer J Respir Crit Care Med, 2020, 201(1): 20-32.
9
Bhattacharya M, Kallet RH, Ware LB, et al. Negative-pressure pulmonary edema [J]. Chest, 2016, 150(4): 927-933.
10
Yoshida T, Amato MBP, Kavanagh BP, et al. Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome [J]. Curr Opin Crit Care, 2019, 25(2): 192-198.
11
Kiss T, Bluth T, Braune A, et al. Effects of positive end-expiratory pressure and spontaneous breathing activity on regional lung inflammation in experimental acute respiratory distress syndrome [J]. Crit Care Med, 2019, 47(4): e358-e365.
12
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort [J]. Amer J Respir Crit Care Med, 2017, 196(5): 590-601.
13
Piquilloud L, Beloncle F, Richard JM, et al. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study [J]. Ann Intensive Care, 2019, 9(1): 89.
14
Shi ZH, Jonkman A, de Vries H, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding [J]. Intens Care Med, 2019, 45(8): 1061-1071.
15
Pellegrini M, Hedenstierna G, Roneus A, et al. The diaphragm acts as a brake during expiration to prevent lung collapse [J]. Amer J Respir Crit Care Med, 2017, 195(12): 1608-1616.
16
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation [J]. Crit Care (London, England), 2019, 23(1): 346.
17
Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume [J]. Crit Care Med, 2016, 44(2): 282-290.
18
Doorduin J, Nollet JL, Roesthuis LH, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes [J]. Amer J Respir Crit Care Med, 2017, 195(8): 1033-1042.
19
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives [J]. Intens Care Med, 2016, 42(9): 1360-1373.
20
Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury [J]. Crit Care Med, 2013, 41(2): 536-545.
21
Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates [J]. Intens Care Med, 2017, 43(10): 1453-1463.
22
Grieco DL, Menga LS, Raggi V, et al. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure [J]. Amer J Respir Crit Care Med, 2020, 201(3): 303-312.
23
Reyher C, Muellenbach RM, Lepper PM, et al. Update extracorporeal lung support [J]. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS, 2020, 55(3): 165-177.
24
Costa R, Navalesi P, Cammarota G, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist [J]. Respir Physiol Neurobiol, 2017, 244: 10-16.
25
Dashti-Khavidaki S, Khalili H. Considerations for statin therapy in patients with COVID-19 [J]. Pharmacotherapy, 2020, 40(5): 484-486.
26
McGonagle D, Sharif K, O'Regan A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease [J]. Autoimmun Rev, 2020, 19(6): 102537.
27
Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine [J]. J Inflamm (Lond), 2019, 16: 1.
28
Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: Immunopathology in COVID-19 [J]. Arthritis Rheumatol, 2020, 72(7): 1059-1063.
29
Liu B, Bao L, Wang L, et al. Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice[J]. J Microbiol Immunol Infect, 2019:S1684-1182(18)30438-9.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[3] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[4] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[5] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[6] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[7] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[8] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[9] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[10] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[11] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[12] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[13] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[14] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[15] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
阅读次数
全文


摘要