切换至 "中华医学电子期刊资源库"




中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (01): 66 -70. doi: 10.3877/cma.j.issn.2096-1537.2021.01.011

所属专题: 文献资源库

综述 上一篇    下一篇

李晗 1, 陈强 1, 韩旭东 1 , ( )   
  1. 1. 226000 江苏南通,南通大学附属南通第三医院重症医学科
  • 收稿日期:2020-04-29 出版日期:2021-02-28
  • 通信作者: 韩旭东
  • 基金资助:
    江苏省南通市卫健委市级重点学科支持项目(wx2017002); 江苏省南通市科技计划项目(MS12017004-2,MS12018040,XG202003-3)

Pathogenesis and Interventions of patient self-inflicted lung injury in ARDS

Han Li 1, Qiang Chen 1, Xudong Han 1 , ( )   

  1. 1. Department of Critical Care Medicine, Nantong Third Hospital Affiliated to Nantong University, Nantong 226000, China
  • Received:2020-04-29 Published:2021-02-28
  • Corresponding author: Xudong Han

自主呼吸可能对ARDS患者有多种生理益处,包括减少镇静需求,保持膈肌活动和改善心血管功能。然而,剧烈的自主呼吸努力可能会加重肺损伤,2017年起,用力呼吸导致的肺损伤被称为“患者自戕性肺损伤(P-SILI)”。如何减轻ARDS P-SILI,让患者保持“安全”的自主呼吸成为临床医疗的研究热点。本文就呼吸驱动力在ARDS P-SILI中的生理和临床意义做一综述,并探讨评估呼吸驱动力的方法和改善P-SILI的措施,旨在为减轻ARDS患者的肺损伤提供理论依据,并为最新暴发的新型冠状病毒肺炎的治疗提供新思路。

Spontaneous breathing may offer multiple physiologic benefits for patients with ARDS, including decreased need for sedation, preserved diaphragm activity and improving cardiovascular function. However, vigorous spontaneous breathing efforts may aggravate lung injury. The effort-dependent lung injury has been termed 'patient self-inflicted lung injury (P-SILI)' in 2017. How to prevent P-SILI in ARDS and keep 'safe' spontaneous breathing become the research focus in clinical treatment. This article reviews the physiological and clinical significance of respiratory driving force in ARDS patients with self-inflicted lung injury, and discusses methods to evaluate respiratory driving force and measures to improve P-SILI, in order to provide theoretical basis for reducing lung injury in ARDS patients, and provide a new idea for the treatment of the latest outbreak of COVID-19.

图1 大脑曲线和通气曲线的关系(大脑神经驱动的理论要求和肺部实际通气之间的关系)。图a为健康受试者的实际通气能达到理论要求的水平,其大脑曲线与通气曲线是重叠一致的。图b为ARDS患者的代谢曲线上移,在一定的分钟通气时,ARDS患者的PaCO2高于正常水平。由于呼吸负荷增加和肌无力,PaCO2升高,分钟通气量降低,通气曲线右移;而低氧血症、酸中毒和炎症水肿等引起神经呼吸驱动的刺激增加,大脑理论要求的分钟通气量更高,大脑曲线左移,导致ARDS患者大脑曲线与通气曲线的分离
表1 呼吸驱动力监测工具
Morais CCA, Koyama Y, Yoshida T, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious [J]. Amer J Respir Crit Care Med, 2018, 197(10): 1285-1296.
Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury [J]. Crit Care Med, 2012, 40(5): 1578-1585.
Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing [J]. Curr Opin Crit Care, 2020, 26(1): 59-65.
Sasidhar M, Chatburn RL. Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis [J]. Respir Care, 2012, 57(8): 1325-1333.
Lalgudi Ganesan S, Jayashree M, Chandra Singhi S, et al. Airway pressure release ventilation in pediatric acute respiratory distress syndrome. a randomized controlled trial [J]. Amer J Respir Crit Care Med, 2018, 198(9): 1199-1207.
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure [J]. Amer J Respir Crit Care Med, 2017, 195(4): 438-442.
Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions [J]. Intensive Care Med, 2020, 46(4): 606-618.
Vaporidi K, Akoumianaki E, Telias I, et al. Respiratory drive in critically ill patients. pathophysiology and clinical implications [J]. Amer J Respir Crit Care Med, 2020, 201(1): 20-32.
Bhattacharya M, Kallet RH, Ware LB, et al. Negative-pressure pulmonary edema [J]. Chest, 2016, 150(4): 927-933.
Yoshida T, Amato MBP, Kavanagh BP, et al. Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome [J]. Curr Opin Crit Care, 2019, 25(2): 192-198.
Kiss T, Bluth T, Braune A, et al. Effects of positive end-expiratory pressure and spontaneous breathing activity on regional lung inflammation in experimental acute respiratory distress syndrome [J]. Crit Care Med, 2019, 47(4): e358-e365.
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort [J]. Amer J Respir Crit Care Med, 2017, 196(5): 590-601.
Piquilloud L, Beloncle F, Richard JM, et al. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study [J]. Ann Intensive Care, 2019, 9(1): 89.
Shi ZH, Jonkman A, de Vries H, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding [J]. Intens Care Med, 2019, 45(8): 1061-1071.
Pellegrini M, Hedenstierna G, Roneus A, et al. The diaphragm acts as a brake during expiration to prevent lung collapse [J]. Amer J Respir Crit Care Med, 2017, 195(12): 1608-1616.
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation [J]. Crit Care (London, England), 2019, 23(1): 346.
Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume [J]. Crit Care Med, 2016, 44(2): 282-290.
Doorduin J, Nollet JL, Roesthuis LH, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes [J]. Amer J Respir Crit Care Med, 2017, 195(8): 1033-1042.
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives [J]. Intens Care Med, 2016, 42(9): 1360-1373.
Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury [J]. Crit Care Med, 2013, 41(2): 536-545.
Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates [J]. Intens Care Med, 2017, 43(10): 1453-1463.
Grieco DL, Menga LS, Raggi V, et al. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure [J]. Amer J Respir Crit Care Med, 2020, 201(3): 303-312.
Reyher C, Muellenbach RM, Lepper PM, et al. Update extracorporeal lung support [J]. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS, 2020, 55(3): 165-177.
Costa R, Navalesi P, Cammarota G, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist [J]. Respir Physiol Neurobiol, 2017, 244: 10-16.
Dashti-Khavidaki S, Khalili H. Considerations for statin therapy in patients with COVID-19 [J]. Pharmacotherapy, 2020, 40(5): 484-486.
McGonagle D, Sharif K, O'Regan A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease [J]. Autoimmun Rev, 2020, 19(6): 102537.
Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine [J]. J Inflamm (Lond), 2019, 16: 1.
Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: Immunopathology in COVID-19 [J]. Arthritis Rheumatol, 2020, 72(7): 1059-1063.
Liu B, Bao L, Wang L, et al. Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice[J]. J Microbiol Immunol Infect, 2019:S1684-1182(18)30438-9.
[1] 刘盼盼, 王燕, 周银超, 董绉绉. 早期膈肌萎缩对急性呼吸窘迫综合征机械通气患者撤机结局的影响研究[J]. 中华危重症医学杂志(电子版), 2022, 15(01): 36-41.
[2] 宗立永, 刘爱敏, 丁士芳, 吴大玮, 李琛, 翟茜, 杜滨锋, 李远. 血管外肺水含量变化与急性呼吸窘迫综合征患者预后的临床研究[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 380-385.
[3] 许玫莎, 王聪, 郑友峰, 吴挺实, 肖成钦, 陈伟. 血浆和肽素联合肺部超声评分及肺血管通透性指数对成人急性呼吸窘迫综合征患者预后预测的临床价值[J]. 中华危重症医学杂志(电子版), 2021, 14(03): 222-225.
[4] 赵云峰, 徐志华, 巫梦娜, 顾维立. 血清miR-133a在脓毒症并发ARDS中表达及预后的关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 38-41.
[5] 李岳航, 赵敏. 血清sTREM-1、suPAR在创伤相关ARDS中的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 116-118.
[6] 秦丽, 林江, 陈代刚, 江洪艳, 金妮, 黄毅. 库欣综合征合并致命性多机会感染一例[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 843-844.
[7] 凡华, 张国新, 李庚. MicroRNA-155联合MicroRNA-127对急性呼吸窘迫综合征预后的意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 760-763.
[8] 赵和萌, 李晓娜, 黄圆美, 周进进, 王娟. 肺泡死腔分数与急性呼吸窘迫综合征患儿预后分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 620-622.
[9] 鲁卫华, 王涛, 秦雪梅, 徐前程, 姜小敢. 早期清醒俯卧位联合经鼻高流量氧疗治疗重型新型冠状病毒肺炎一例[J]. 中华重症医学电子杂志, 2022, 08(01): 85-89.
[10] 周润奭, 隆云, 李尊柱, 李奇, 韩伟, 袁思依, 杨玉洁. EIT监测ARDS脱机困难患者早期活动过程中肺部通气变化[J]. 中华重症医学电子杂志, 2021, 07(04): 319-325.
[11] 张莹, 岳伟岗, 蒋由飞, 袁鹏, 尹瑞元, 冯鑫, 张志刚, 田金徽, 李斌. 气道压力释放通气对ARDS患者有效性的Meta分析与试验序贯分析[J]. 中华重症医学电子杂志, 2021, 07(04): 339-346.
[12] 姜硕, 王梦楠, 赵慧颖, 郭晓夏, 王慧霞, 安友仲. cGAS/STING通过NLRP3炎性小体调控人肺微血管内皮细胞炎症的作用机制[J]. 中华重症医学电子杂志, 2021, 07(03): 233-240.
[13] 董学程, 刘玲. ARDS中肺泡巨噬细胞自噬对肺损伤调节作用的研究进展[J]. 中华重症医学电子杂志, 2021, 07(03): 268-271.
[14] 中国研究型医院学会危重医学专业委员会, 中国医药教育协会重症医学专业委员会. 西维来司他钠临床应用专家共识(2022)[J]. 中华卫生应急电子杂志, 2022, 08(01): 1-5.
[15] 胡义凤, 汪陈豪, 吴周全. 羟考酮与舒芬太尼在自主呼吸下胸腔镜手术中的作用比较[J]. 中华卫生应急电子杂志, 2021, 07(06): 349-352.