切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (04) : 355 -359. doi: 10.3877/cma.j.issn.2096-1537.2021.04.012

重症医学研究

人工神经网络技术预测颅脑损伤患者的预后效果
刘微丽1,(), 张雨嫣2, 孟丽君1, 吴徐峰3, 袁文杰1, 李玉呈1, 韦广发1, 袁锐4   
  1. 1. 225000 扬州大学附属医院重症医学科
    2. 225000 扬州大学医学院临床医学系
    4. 225000 扬州市锐创信息科技有限公司
  • 收稿日期:2021-01-09 出版日期:2021-11-28
  • 通信作者: 刘微丽

Establishing an novel prognostic model of patients with craniocerebral injury by artificial neural network

Weili Liu1,(), Yuyan Zhang2, Lijun Meng1, Xufeng Wu3, Wenjie Yuan1, Yucheng Li1, Guangfa Wei1, Rui Yuan4   

  1. 1. Department of Critical Care Medicine, Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
    2. Jiangsu Institute of Health Emergency Response, Xuzhou Medical University, Xuzhou 221002, China
    3. Yangzhou University School of Medicine, Yangzhou 225000, China
    4. Rui Chuang Information Technology Co., Ltd., Yangzhou 225000, China
  • Received:2021-01-09 Published:2021-11-28
  • Corresponding author: Weili Liu
引用本文:

刘微丽, 张雨嫣, 孟丽君, 吴徐峰, 袁文杰, 李玉呈, 韦广发, 袁锐. 人工神经网络技术预测颅脑损伤患者的预后效果[J/OL]. 中华重症医学电子杂志, 2021, 07(04): 355-359.

Weili Liu, Yuyan Zhang, Lijun Meng, Xufeng Wu, Wenjie Yuan, Yucheng Li, Guangfa Wei, Rui Yuan. Establishing an novel prognostic model of patients with craniocerebral injury by artificial neural network[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(04): 355-359.

目的

运用人工神经网络(ANN)技术预测颅脑损伤患者的预后效果。

方法

在已完成的与预后相关的入院指标的二次多项式回归模型研究的基础上,回顾性分析2013年1月至2017年8月入住扬州大学附属医院重症医学科的130例颅脑损伤患者的临床资料,建立基于ANN技术的颅脑损伤患者预后预测模型,同时采用2017年10月至2019年3月46例颅脑损伤患者临床资料进行外部验证,计算其相关系数、敏感度及特异度等参数,并与二次多项式逐步回归模型进行对比分析。

结果

ANN技术建立的颅脑损伤患者预后预测模型,内部验证中,其相关系数为0.8935,不良预后的敏感度为94.8%(55/58),特异度为82.1%(55/67);良好预后的敏感度为95.5%(42/44),特异度为87.5%(42/48)。外部验证中,其相关系数为0.7138,不良预后的敏感度为43.8%(7/16),特异度为100.0%(7/7);良好预后的敏感度为100.0%(26/26),特异度为66.7%(26/39)。

结论

与二次多项回归模型比较,ANN技术建立的预测颅脑损伤患者预后的数学模型的模型拟合程度较高,但对于预后评估的敏感度及特异度,优势不明显。

Objective

To apply an artificial neural network (ANN) in patients with craniocerebral injury to characterize its prognostic ability.

Methods

Based on the completed quadratic polynomial stepwise regression analysis, data of 130 patients with brain injury from January 2013 to August 2017 in the Department of Critical Care Medicine of the Affiliated Hospital of Yangzhou University were collected. A prognostic prediction model was established based on artificial neural network technology. Then the clinical data of 46 patients with craniocerebral injury admitted from October 2017 to March 2019 were used for external verification, the correlation coefficient, sensitivity and specificity were calculated, and compared with the quadratic polynomial stepwise regression model.

Results

Artificial neural network technology could be used to establish a prognosis prediction model for patients with craniocerebral injury. The correlation coefficient was 0.8935. In internal verification, the sensitivity of "poor outcome" (GOS score 1 or 2 points) was 94.8% (55/58), the specificity was 82.1% (55/67); the sensitivity of "good outcome" (GOS score 4 or 5 points) was 95.5% (42/44), and the specificity was 87.5% (42/48). The external verification correlation coefficient was 0.7138, the sensitivity of "poor outcome" was 43.8% (7/16), the specificity was 100.0% (7/7); the sensitivity of "good outcome" was 100.0% (26/26), the specificity was 66.7% (26/39).

Conclusion

The mathematical model established by artificial neural network technology has a better fitting than the quadratic polynomial stepwise regression model for predicting the prognosis of patients with brain injury. However, for the sensitivity and specificity of prognostic evaluation, the neural network model does not show obvious advantages.

表1 神经网络模型变量信息
图1 模型的体系结构注:X1为年龄;X2为APACHEⅡ评分;X3为GCS评分;X4为HR;X5为SBP;X6为影像学出血量;X7为中线偏移;X8为PaO2X9为PaCO2X10为Lac;X11为BG;X12为RASS评分;Y为GOS;APACHEⅡ为急性生理学与慢性健康状况;GCS为格拉斯哥昏迷评分;HR为心率;SBP为收缩压;PaO2为动脉血氧分压;PaCO2为动脉血二氧化碳分压;Lac为乳酸;BG为血糖;RASS为Richmond镇静-躁动评分;GOS为格拉斯哥预后评分
图2 变量重要性排序注:X6为影像学出血量;X10为Lac;X3为GCS评分;X11为BG;X2为APACHEⅡ评分;X1为年龄;X12为RASS评分;X8为PaO2X9为PaCO2X4为HR;X5为SBP;X7为中线偏移
表2 深度神经网络模型与二次多项回归模型预后的敏感度和特异度比较[%(n1/n2)]
表3 深度神经网络模型与二次多项回归模型预后的敏感度和特异度比较[%(n1/n2)]
1
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China [J]. Lancet Neurol, 2019, 18(3): 286-295.
2
Stocchetti N, Carbonara M, Citerio G, et al. Severe traumatic brain injury:targeted management in the intensive care unit [J]. Lancet Neurol, 2017, 16(6): 452-464.
3
韦广发, 郑庆斌, 孟丽君, 等. 数学模型在颅脑损伤患者入院指标与预后指标多因素模型分析中的应用 [J/OL]. 中华重症医学电子杂志, 2019, 5(4): 346-352.
4
Nakajima K, Matsuo S, Wakabayashi H, et al. Diagnostic performance of artificial neural network for detecting ischemia in myocardial perfusion imaging [J]. Circ J, 2015, 79: 1549-1556.
5
Holmgren G, Andersson P, Jakobsson A, et al. Artificial neural networks improve and simplify intensive care mortality prognostication: a national cohort study of 217, 289 first-time intensive care unit admissions[J]. J Intensive Care, 2019, 7: 44.
6
Nanayakkara S, Fogarty S, Tremeer M, et al. Characte rising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study [J]. PLoS Med, 2018, 15(11): e1002709.
7
章鸣嬛, 陈瑛, 郭欣, 等.利用Logistic回归和神经网络分析乳腺癌的预后因素 [J]. 计算机与数字工程, 2020, 48(3): 617-622.
8
陈超, 郭学文, 唐冬, 等. 基于人工神经网络数据挖掘技术构建浸润性膀胱癌预后模型研究 [J/OL]. 泌尿外科杂志(电子版), 2015, 7(2): 38-42.
9
李惠萍, 胡安民. 机器学习DNN和XGBoost算法对危重患者预后预测模型效能评估 [J]. 实用医学杂志, 2020, 36(4): 466-469.
10
潘晓英, 杨清萍. 基于遗传神经网络和舌根癌Radiomics特征的生存期预测 [J]. 计算机与数字工程, 2020, 47(10): 2509-2512.
11
Sheikhi S, Saboory E, Farjah GH. Correlation of nerve fibers in corpus callosum and number of neurons in cerebral cortex: an innovative mathematical model [J]. Int J Neurosci, 2018, 128(10): 995-1002.
[1] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J/OL]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[2] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[3] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[4] 吴东阳, 林向丹, 石佐林, 赵玉龙, 王振, 文安国, 纪鑫, 李俊之, 赵明光. NF-L、NLRP3、S100B 蛋白在颅脑损伤严重程度及预后评估中的应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 279-285.
[5] 罗磊, 熊建平, 郑宏伟, 王嗣嵩, 柴祥, 吴青, 潘海鹏. 静脉留置针穿刺引流治疗颅骨修补术后硬膜外积液一例报道[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 315-317.
[6] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[7] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[8] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[9] 鹿海龙, 朱玉辐, 贺雪凤, 蔡廷江, 王栋, 朱圣玲, 张恩刚, 王策. 创伤性颅脑损伤二次手术的危险因素分析及预警模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 97-101.
[10] 李鑫, 刘炳辉, 程名, 王凡, 刘玉明, 周绍明. 基于Rotterdam CT评分评估的颅脑损伤术中控制性减压的临床应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 16-21.
[11] 罗丹, 柏宋磊, 易峰. HMGB1-TLR2/TLR4/RAGE通路与颅脑损伤并发认知功能障碍病情变化的关系研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 28-34.
[12] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[13] 袁宝玉, 管义祥, 王东流, 陆正. 不同时机颅骨修补术治疗颅脑外伤的临床疗效[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 35-41.
[14] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[15] 李建, 张立, 高嵘, 倪海波, 宋照明, 陈周青, 王中. 创伤性脑血管损伤的识别和治疗[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(06): 596-603.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?