切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 353 -359. doi: 10.3877/cma.j.issn.2096-1537.2022.04.013

重症医学研究

基于数据挖掘和网络拓扑学对藏药红景天调控脑微循环作用靶点和信号通路的筛选
马四清1, 陈强1,(), 徐颖1, 闫秀娟2, 刘娟丽1   
  1. 1. 810007 西宁,青海省人民医院重症医学科
    2. 810007 西宁,青海省第五人民医院神经内科
  • 收稿日期:2022-11-07 出版日期:2022-11-28
  • 通信作者: 陈强
  • 基金资助:
    青海省科技计划项目(2020-ZJ-754)

Screening target and signal pathway regulating cerebral microcirculation of the Tibetan medicine Rhodiola based on data mining and network topology

Siqing Ma1, Qiang Chen1,(), Ying Xu1, Xiujuan Yan2, Juanli Liu1   

  1. 1. Department of Critical Care Medicine, Qinghai Provincial People's Hospital, Xining 810007, China
    2. Department of Neurology, the Fifth People's Hospital of Qinghai Province, Xining 810007, China
  • Received:2022-11-07 Published:2022-11-28
  • Corresponding author: Qiang Chen
引用本文:

马四清, 陈强, 徐颖, 闫秀娟, 刘娟丽. 基于数据挖掘和网络拓扑学对藏药红景天调控脑微循环作用靶点和信号通路的筛选[J]. 中华重症医学电子杂志, 2022, 08(04): 353-359.

Siqing Ma, Qiang Chen, Ying Xu, Xiujuan Yan, Juanli Liu. Screening target and signal pathway regulating cerebral microcirculation of the Tibetan medicine Rhodiola based on data mining and network topology[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(04): 353-359.

目的

基于化学相似性靶点预测与网络拓扑学分析方法,对藏药红景天改善脑微循环潜在作用靶点进行虚拟筛选。

方法

通过化学成分数据库及相关文献信息提取收集红景天化学成分,利用药代动力学参数(如吸收、分布、代谢、排泄,即ADME)筛选出活性成分;利用swiss在线靶点预测平台采用化学相似性方法预测红景天活性成分的潜在靶点;通过GeneCards数据库获取脑微循环相关靶点,并获取红景天活性成分与脑微循环共有靶点;利用STRING数据库获取共有靶点蛋白间相互作用关系;利用Cytoscape软件构建蛋白质间相互作用(PPI)网络模型,基于网络拓扑学算法获取核心靶点(core target);最后,对共有靶点进行KEGG分析,明确藏药红景天改善脑微循环的主要信号通路。

结果

从藏药红景天中筛选出76个活性成分和660个靶点,获取脑微循环相关靶点526个,交集靶点141个,核心靶点AKT1、肿瘤坏死因子(TNF)、血管内皮生长因子A(VEGFA)、甘油醛-3-磷酸脱氢酶(GAPDH)、丝裂原活化蛋白激酶3(MAPK3)、表皮生长因子受体(EGFR)、非受体酪氨酸激酶(SRC)、胱天蛋白酶(Casp 3),反向查找核心靶点相关成分,获取25个关键活性成分。《京都议定书》的基因与基因组百科全书(KEGG)通路富集分析得到150条通路(P<0.01),其中最主要的信号通路包括:缺氧诱导因子(HIF)-1信号通路、Rap1信号通路、黏着斑、松弛素信号通路、Ras信号通路、磷酸肌醇3激酶-蛋白激酶B(PI3K-Akt)信号通路、TNF信号通路、ErbB信号通路

结论

藏药红景天可通过多成分、多靶点、多通路协同发挥改善脑微循环作用,该研究初步筛选出了藏药红景天调控脑微循环潜在作用靶点及作用的信号通路,为进一步拓展应用藏药红景天的脑保护(药理作用)提供了较为丰富的理论依据。

Objective

To virtually screen out the potential targets improving brain microcirculation of the Tibetan medicine Rhodiola, based on chemical similarity target prediction and network topology analysis methods.

Methods

The active ingredients of Rhodiola based on chemical composition database and related literatures, were selected by pharmacokinetic parameters (ADME). The swiss online target prediction platform was used to predict potential targets of active components of Rhodioal sachalinensis by chemical similarity method. Obtaining brain microcirculation-related targets through the GeneCards database, and obtaining the Rhodiola active components and brain microcirculation common target. Common target proteins were linked to the STRING database. Construction of a protein-protein interaction (PPI) network model using Cytoscape software. Obtaining core targets (core target) based on network topology algorithm. For KEGG analysis of the common targets, to clarify which signaling pathways are potential targets of Rhodiola to improve brain microcirculation.

Results

Seventy-six active components and 660 targets were selected from Tibetan medicine Rhodiola to obtain 526 brain microcirculation related targets, 141 intersection targets, core targets AKT1, TNF, VEGFA, GAPDH, MAPK3, EGFR, SRC, Casp 3, and reverse find core target related components to obtain 25 key active components. The KEGG analysis selected 150 pathways (P<0.01), and the main signaling pathways include: HIF-1 signaling pathway, Rap1 signaling pathway, focal adhesion plaque, relaxin signaling pathway, Ras signaling pathway, and PI3K-Akt signaling pathway, TNF signaling pathway, and ErbB signaling pathway.

Conclusion

Tibetan medicine Rhodiola can improve the role of brain microcirculation through multi-component, multi-target and multi-pathway coordination. This study has preliminarily screened out the potential targets and signal pathway of regulating cerebral microcirculation, which provides a rich theoretical basis for further expanding the application of Tibetan medicine Rhodiola brain protection and pharmacology.

图1 红景天与脑微循环相关靶点韦恩图
图2 红景天与脑微循环共同靶点PPI网络。绿色节点代表红景天调控脑微循环的核心靶点,蓝色节点代表其他潜在靶点,线条代表节点间相互作用注:PPI为蛋白质间相互作用
图3 红景天改善脑微循环的核心靶点相互作用网络。绿色节点代表核心靶点蛋白,线条代表节点间相互作用,线条越粗,表示两个靶点蛋白间相互作用越强注:VEGFA为血管内皮生长因子A;GAPDH为甘油醛-3-磷酸脱氢酶;MAPK3为丝裂原活化蛋白激酶3;EGFR为表皮生长因子受体;SRC为非受体酪氨酸激酶;Casp 3为胱天蛋白酶;TNF为肿瘤坏死因子
表1 药材红景天关键活性成分与核心靶点的关系
编号 药材 关键活性成分 核心靶点 编号 药材 关键活性成分 核心靶点
1 红景天 3-Octanol EGFR 21 红景天 quercetin AKT1
2 红景天 Formic Acid Hexyl Ester EGFR 22 红景天 5-O-Caffeoylshikimic acid Casp 3
3 红景天 Umbelliferone EGFR 23 红景天 Ferulic acid EGFR
4 红景天 Umbelliferone AKT1 24 红景天 Rhodioloside E Casp 3
5 红景天 Caffeic Acid EGFR 25 红景天 Creoside Ⅳ VEGFA
6 红景天 kaempferol EGFR 26 红景天 Creoside Ⅲ TNF
7 红景天 kaempferol SRC 27 红景天 Creoside Ⅲ EGFR
8 红景天 kaempferol AKT1 28 红景天 Isolariciresinol MAPK3
9 红景天 Ethyl Gallate SRC 29 红景天 2-(4-Hydroxyphenyl)ethyl 3,4,5-trihydroxybenzoate SRC
10 红景天 crenulatin VEGFA 30 红景天 Sachaloside Ⅱ VEGFA
11 红景天 crenulatin GAPDH 31 红景天 Sachaloside Ⅱ EGFR
12 红景天 crenulatin EGFR 32 红景天 Eriodictyol SRC
13 红景天 5,4′-dihydroxy-7,3′-dimethoxyflavone EGFR 33 红景天 Eriodictyol AKT1
14 红景天 5,4′-dihydroxy-7,3′-dimethoxyflavone AKT1 34 红景天 Rhodiooctanoside VEGFA
15 红景天 5,4′-dihydroxy-7,3′-dimethoxyflavone SRC 35 红景天 Creoside Ⅴ VEGFA
16 红景天 tricin EGFR 36 红景天 oxiranemethanol,3-methyl-3-(4-methyl-3-pentenyl)- EGFR
17 红景天 tricin SRC 37 红景天 2-hydroxy-1,1,10-trimethyl-6,9-epidioxydecalin EGFR
18 红景天 tricin AKT1 38 红景天 geranyl acetate EGFR
19 红景天 quercetin EGFR 39 红景天 farnesal EGFR
20 红景天 quercetin SRC
图4 红景天改善脑微循环潜在靶点KEGG通路富集分析
表2 红景天改善脑微循环潜在靶点KEGG富集分析结果
1
罗勇军, 马四清. 急性高原反应发病的危险因素相关研究进展 [J]. 第三军医大学学报, 2019, 41(8): 723-728.
2
Nijland PG, Michailidou I, Witte ME, et al. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions [J]. Glia, 2014, 62(7): 1125-1141.
3
Tabuchi A, Nickles HT, Kim M, et al. Acute lung injury causes asynchronous alveolar ventilation that can be corrected by individual sighs [J]. Am J Respir Crit Care Med, 2016, 193(4): 396-406.
4
官喜龙, 徐静, 陈轶尘, 等. 基于生物信息学筛选红景天苷对大鼠缺血/再灌注神经保护作用的相关基因 [J]. 中国药理学通报, 2020, 36(12): 1764-1770.
5
秦川, 沈利辉, 王树青. 红景天对蛛网膜下腔出血致脑血管痉挛的防治效果 [J]. 中南医学科学杂志, 2022, 50(03): 421-424.
6
Han F, Li YT, Ma L, et al. A rapid and sensitive UHPLCFT-ICR MS /MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration [J]. Talanta, 2016, 160: 183193.
7
赵娜, 赵国华, 王仁久, 等. 大株红景天化学成分的研究 [J]. 天津医科大学学报. 2016. 22(2): 119-121, 125.
8
范芳芳, 张雯, 余羊羊, 等. 基于网络药理学的藏药红景天功效关联性质量标志物预测分析 [J]. 中草药, 2021, 52(22): 6991-6922.
9
Li D, Park S, Lee K, et al. 5-HT1A receptors mediate the analgesic effect of rosavin in a mouse model of oxaliplatin-induced peripheral neuropathic pain [J]. Korean J Physiol Pha, 2021, 25(5): 489-494.
10
Davis C, Haekett P. Advances in the prevention and treat-ment of high-altitude illness [J]. Emerg MedClin, 2017, 35: 241-260.
11
Takeshita Y, Sato R, Kanda T. Blood-nerve barrier (BNB) pathology in diabetic peripheral neuropathy and in vitro human BNB model [J]. Int J Mol Sci, 2020, 22(1): 62-76.
12
Liu F, Lu J, Manaenko A, et al. Mitochondria in ischemic stroke: new insight and implications [J]. Aging Dis, 2018, 9(5): 924-937.
13
Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1) [J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
14
朱婷娜, 徐恩. 缺氧诱导因子-1α在脑缺血中的作用及其机制 [J]. 国际脑血管病杂志, 2012, 20(4): 310-314.
15
Uno H. Matsuyama T, Akita H, et al. Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia [J]. J Cereb Blood Flow Metab, 1997, 17(5): 491-499.
16
Brecht A, Bartsch C, Baumann G, et al. Relaxin inhibits early steps in vascular inflammation [J]. Regul Pept, 2011, 166(1-3): 76-82.
17
张楠, 王萍. 松弛素对冠状动脉微循环的影响 [J]. 心血管病学进展, 2019, 40(5): 704-708.
18
Dschietzig T, Bartsch C, Richter C, et al. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB [J]. Circ Res, 2003, 92(1): 32-40.
19
Kitayama H, Sugimoto Y, Matsuzaki T, et al. A ras-related gene with transformation suppressor activity [J]. Cell, 1989, 56(1): 77-84.
20
Frische EW, Zwartkruis FJ. Rap1, a mercenary among the Ras-like GTPases [J]. Dev Biol, 2010, 340(1): 1-9.
21
Shah S, Brock EJ, Ji K, et al. Ras and Rap1: A tale of two GTPases [J]. Semin Cancer Biol, 2019, 54: 29-39.
22
Avraham HK, Lee TH, Koh Y, et al. Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase [J]. J Biol Chem, 2003, 278(38): 36661-36668.
23
Song S, Carr SG, McDermott KM, et al. STIM 2 (Stromal Interaction Molecule 2)-mediated increase in resting cytosolic free Ca2+ concentration stimulates PASMC proliferation in pulmonary arterial hypertension [J]. Hypertension, 2018, 71(3): 518-529.
24
Sharp CD, Hines I, Houghton J, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor [J]. Am J Physiol Heart Circ Physiol, 2003, 285(6): H2592-H2598.
[1] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[2] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[3] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[4] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[5] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[6] 黄军杰, 王烈, 赵虎, 夏印, 张再重. lncRNA作为ceRNA参与婴幼儿血管瘤发生发展机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 360-366.
[7] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[8] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[9] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[10] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[11] 宋宇, 包秀丽. Dickkopf相关蛋白-1在眼部纤维化疾病中的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 362-366.
[12] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[13] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
阅读次数
全文


摘要