切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 360 -366. doi: 10.3877/cma.j.issn.2096-1537.2022.04.014

基础研究

EIT在ARDS模型局部复张/过度膨胀比值监测中的应用
王玉妹1, 王岩1, 周益民1, 苗明月1, 杨燕琳1, 张琳琳1, 徐明1, 周建新1,()   
  1. 1. 100070 北京,首都医科大学附属北京天坛医院重症医学科
  • 收稿日期:2022-04-14 出版日期:2022-11-28
  • 通信作者: 周建新
  • 基金资助:
    国家自然科学基金项目(81871582)

Application of regional recruitment-to-inflation ratio monitored by electrical impedance tomography in the models of acute respiratory distress syndrome

Yumei Wang1, Yan Wang1, Yimin Zhou1, Mingyue Miao1, Yanlin Yang1, Linlin Zhang1, Ming Xu1, Jianxin Zhou1,()   

  1. 1. Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
  • Received:2022-04-14 Published:2022-11-28
  • Corresponding author: Jianxin Zhou
引用本文:

王玉妹, 王岩, 周益民, 苗明月, 杨燕琳, 张琳琳, 徐明, 周建新. EIT在ARDS模型局部复张/过度膨胀比值监测中的应用[J]. 中华重症医学电子杂志, 2022, 08(04): 360-366.

Yumei Wang, Yan Wang, Yimin Zhou, Mingyue Miao, Yanlin Yang, Linlin Zhang, Ming Xu, Jianxin Zhou. Application of regional recruitment-to-inflation ratio monitored by electrical impedance tomography in the models of acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(04): 360-366.

目的

观察电阻抗成像技术(EIT)用于监测急性呼吸窘迫综合征(ARDS)模型局部复张/过度膨胀比值(RI ratio)的可行性。

方法

健康巴马猪6只,通过油酸静脉滴入的方法建立ARDS模型,呼气末正压(PEEP)为5 cmH2O的情况下,氧合指数<200 mmHg(1 mmHg=0.133 kPa),并稳定维持30 min,即模型建立成功。模型成功后进行一次肺复张,在PEEP 15 cmH2O(1 cmH2O=0.098 kPa)水平下通气1 h,通过慢吐气的方法将PEEP由15 cmH2O降至5 cmH2O再通气1 h,全程进行EIT监测,实验结束后进行离线分析。肺从腹侧到背侧划分为2个“感兴趣区(ROI)”,通过EIT计算复张容积(Vrec)、整体RI ratio,并计算局部的Vrec和局部的RI ratio。

结果

所有的实验动物均达到了ARDS的标准,造模后的氧合指数明显低于造模前,差异有统计学意义[(151.7±13.4)mmHg vs(422.5±49.9)mmHg,t=14.100,P<0.001]。所有实验动物的RI ratio为1.59(1.42,1.67),6只动物的整体RI ratio、非重力依赖区和重力依赖区RI ratio分别为:1.83、1.03、2.06,1.68、1.51、2.28,1.64、0.98、1.83,1.23、0.93、1.33,1.38、0.02、1.27,1.55、1.41、1.99。

结论

通过EIT监测ARDS患者的局部RI ratio,可提供更多分区复张性的信息。

Objective

To observe the application of regional recruitment-to-inflation ratio (RI ratio) monitored by electrical impedance tomography (EIT) in the models of acute respiratory distress syndrome (ARDS).

Methods

ARDS models were established by intravenous infusion of oleic acid in 6 Bama pigs. The model was considered as being successfully established when the ratio of the partial pressure of oxygen in arterial blood PaO2 to FiO2 (PaO2/FiO2) remained below 200 mmHg for at least 30 min. After the ARDS model was established, a recruitment manuver (RM) was performed. After RM, the animal was ventilated at PEEP 15 cmH2O for one hour. Then, a prolonged expiration was performed and PEEP was decreased from 15 to 5 cmH2O. The process was monitored by EIT, and offline analysis was performed after the experiment. Lung images were divided into two ventral-to-dorsal horizontal regions of interest (ROI). Recruitment volume (Vrec), global RI ratio, regional Vrec and regional RI ratio were calculated by EIT.

Results

ARDS was successfully induced in all experimental animals with median (IQR) PaO2/FiO2 decreasing from (422.5±49.9) mmHg to (151.7±13.4) mmHg (t=14.100, P<0.001). The median and interquartile range of the RI ratio of all experimental animals was 1.59 (1.42, 1.67). The global RI ratio, RI ratio of nondependent areas and dependent areas of 6 animals were 1.83, 1.03, 2.06; 1.68, 1.51, 2.28; 1.64, 0.98, 1.83; 1.23, 0.93, 1.33; 1.38, 0.02, 1.27; 1.55, 1.41, 1.99 respectively.

Conclusion

Regional RI ratio can be calculated and monitored by EIT in ARDS patients, which may provide more information on regional recruitability.

表1 所有实验动物造模前后各指标比较
表2 所有实验动物高低PEEP水平之间各指标的比较(6只)
表3 每只实验动物分区的Vrec和Crec比较(6只)
表4 每只实验动物的分区RI ratio比较(6只)
1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
2
Wendel-Garcia PD, Roche-Campo F, Buehler PK. High positive end-expiratory pressure and lung recruitment in moderate to severe acute respiratory distress syndrome: does one size really fit all? [J]. Am J Respir Crit Care Med, 2022, (11): 1260-1262.
3
Chen L, Del Sorbo L, Grieco DL, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. a clinical trial [J]. Am J Respir Crit Care Med, 2020, 201(2): 178-187.
4
Zerbib Y, Lambour A, Maizel J, et al Respiratory effects of lung recruitment maneuvers depend on the recruitment-to-inflation ratio in patients with COVID-19-related acute respiratory distress syndrome [J]. Crit Care, 2022, 26(1): 12.
5
Stevic N, Chatelain E, Dargent A, et al. Lung recruitability evaluated by recruitment-to-inflation ratio and lung ultrasound in COVID-19 acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2021, 203(8): 1025-1027.
6
Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019 [J]. Crit Care Med, 2020, 48(8): 1129-1134.
7
Frerichs I, Amato MB, van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group [J]. Thorax, 2017, 72(1): 83-93.
8
Sinha P, Calfee CS, Beitler JR, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2019, 199(3): 333-341.
9
Muders T, Luepschen H, Zinserling J, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury [J]. Crit Care Med, 2012, 40(3): 903-911.
10
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition [J]. JAMA, 2012, 307(23): 2526-2533.
11
刘军, 邹桂娟, 李维勤. 急性呼吸窘迫综合征的诊断新进展 [J]. 中华危重病急救医学, 2014, 26(2): 70-73.
12
中国卫生信息与健康医疗大数据学会重症医学分会标准委员会, 北京肿瘤学会重症医学专业委员会, 中国重症肺电阻抗工作组. 肺电阻抗成像技术在重症呼吸管理中的临床应用中国专家共识 [J]. 中华医学杂志, 2022, 102(9): 615-628.
13
Wang YM, Sun XM, Zhou YM, et al. Use of electrical impedance tomography (EIT) to estimate global and regional lung recruitment volume (VREC) induced by positive end-expiratory pressure (PEEP): an experiment in pigs with lung injury [J]. Med Sci Monit, 2020, 26: e922609.
14
王玉妹, 杨燕琳, 孙秀梅, 等. 肺内源性与外源性急性呼吸窘迫综合征模型猪的肺复张性比较 [J/OL]. 中华重症医学电子杂志, 2021, 7(2): 153-158.
15
Iannuzzi M, De Sio A, De Robertis E, et al. Different patterns of lung recruitment maneuvers in primary acute respiratory distress syndrome: effects on oxygenation and central hemodynamics [J]. Minerva Anestesiol, 2010, 76(9): 692-698.
16
Chen L, Del Sorbo L, Grieco DL, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon [J]. Am J Respir Crit Care Med, 2018, 197(1): 132-136.
17
王玉妹, 王岩, 周益民, 等. 基于慢吐气方法选择急性呼吸窘迫综合征模型呼气末正压的可行性 [J]. 首都医科大学学报, 2021, 42(6): 903-908.
18
Chen L, Chen GQ, Shore K, et al. Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome [J]. Crit Care, 2017, 21(1): 84.
19
Mauri T, Eronia N, Turrini C, et al. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography [J]. Intensive Care Med, 2016, 42(10): 1576-1587.
20
Blankman P, Hasan D, Erik G, et al. Detection of 'best' positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial [J]. Crit Care, 2014, 18(3): R95.
21
池熠, 何怀武, 袁思依, 等. 电阻抗成像技术监测急性呼吸窘迫综合征患者呼气末正压滴定时局部机械能的临床应用 [J/OL]. 中华重症医学电子杂志, 2019, 5(2): 115-119.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[3] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[4] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[5] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[6] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[7] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[8] 马娟娟, 陈雪玲, 王蕾. ARDS患者救治中有创呼吸机辅助呼吸的临床干预及疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 876-878.
[9] 胡宗俊, 岳希, 黄霞. 肺段肺复张对急性呼吸窘迫综合征患者预后的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 796-800.
[10] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[11] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[12] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[13] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[14] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[15] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
阅读次数
全文


摘要