切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (03) : 286 -291. doi: 10.3877/cma.j.issn.2096-1537.2023.03.009

综述

重症急性胰腺炎早期免疫抑制的研究进展
高军龙(), 张昕, 周倩倩, 袁媛   
  1. 730000 兰州,甘肃省人民医院重症医学科
  • 收稿日期:2022-11-25 出版日期:2023-08-28
  • 通信作者: 高军龙
  • 基金资助:
    兰州市科技计划项目(2022-5-62)

Advances in immunosuppression for early severe acute pancreatitis

Junlong Gao(), Xin Zhang, Qianqian Zhou, Yuan. Yuan   

  1. Department of Intensive Care Medicine, Gansu Provincial Hospital, Lanzhou 730000, China
  • Received:2022-11-25 Published:2023-08-28
  • Corresponding author: Junlong Gao
引用本文:

高军龙, 张昕, 周倩倩, 袁媛. 重症急性胰腺炎早期免疫抑制的研究进展[J/OL]. 中华重症医学电子杂志, 2023, 09(03): 286-291.

Junlong Gao, Xin Zhang, Qianqian Zhou, Yuan. Yuan. Advances in immunosuppression for early severe acute pancreatitis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(03): 286-291.

重症急性胰腺炎(SAP)在ICU临床管理中具有诸多挑战,病情严重程度往往取决于早期炎症反应,约30%的SAP患者因严重的细菌感染或器官衰竭而死亡。研究显示SAP患者早期就已发生全身免疫抑制和肠道黏膜免疫损伤,可导致感染性坏死性胰腺炎、菌血症等感染并发症,与病程加长,病死率增加相关。然而临床上经常忽视SAP早期免疫抑制,缺少被证实安全、有效的免疫干预措施,导致最佳治疗时间错过和感染相关并发症增加。本文总结近年来SAP早期免疫抑制的研究热点,为及时识别免疫抑制和免疫干预研究提供参考,减少病程早期和后期的感染并发症,改善患者预后。

Severe acute pancreatitis (SAP) has many challenges in the clinical management of ICU. The severity and prognosis of the disease often depend on the early inflammatory reaction. About 30% of patients die of severe bacterial infection or organ failure. Studies have shown that SAP patients have suffered from systemic immunosuppression and intestinal immune barrier damage in the early course of disease, which may lead to infectious complications such as infectious necrotizing pancreatitis and bacteremia, and is associated with a longer disease course and increased mortality. However, the early immunosuppression of SAP is often ignored in clinic, and the optimal time for treatment is missed, which leads to progressive aggravation of secondary infection. This article summarizes the researches of early immunosuppression SAP in recent years to provide reference for early identification of immunosuppression and timely immune intervention to reduce the infection complications at the early and late stages of the disease course and improve the prognosis of patients.

1
Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis [J]. Lancet, 2020, 396(10252): 726-734.
2
Zhuang Q, Huang L, Zeng Y, et al. Dynamic monitoring of immunoinflammatory response identifies immunoswitching characteristics of severe acute pancreatitis in rats [J]. Front Immunol, 2022, 13: 876168.
3
Yovtchev Y, Halacheva K, Dimitrov E, et al. Is it time for routinely tracking of early immunosuppression in tracking and prognosing patients with acute pancreatitis [J]. Pancreatology, 2018, 18(4): S97.
4
Sendler M, van den Brandt C, Glaubitz J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis [J]. Gastroenterology, 2020, 158(1): 253-269.
5
Sharma D, Jakkampudi A, Reddy R, et al. Association of systemic inflammatory and anti-inflammatory responses with adverse outcomes in acute pancreatitis: preliminary results of an ongoing study [J]. Dig Dis Sci, 2017, 62(12): 3468-3478.
6
Vaz J, Akbarshahi H, Andersson R. Controversial role of Toll-like receptors in acute pancreatitis [J]. World J Gastroenterol, 2013, 19(5):616-30.
7
Li J, Pan X, Yang J, et al. Enteral virus depletion modulates experimental acute pancreatitis via toll-like receptor 9 signaling [J]. Biochem Pharmacol, 2020, 171: 113710.
8
Shen Y, Cui NQ. Clinical observation of immunity in patients with secondary infection from severe acute pancreatitis [J]. Inflamm Res, 2012, 61(7): 743-748.
9
Zhao Q, Wei Y, Pandol SJ, et al. STING signaling promotes inflammation in experimental acute pancreatitis [J]. Gastroenterology, 2018, 154(6): 1822-1835.
10
Wu J, Chen YJ, Dobbs N, et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death [J]. J Exp Med, 2019, 216(4): 867-883.
11
Zhu Y, He C, Li X, et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice [J]. J Gastroenterol, 2019, 54(4): 347-358.
12
Sendler M, Wilden A, Glaubitz J, et al. Immunosuppression during severe acute pancreatitis is associated with a dramatic shift in intestinal microbiota composition and infected necrosis [J]. Pancreatology, 2020, 20(1): S24.
13
Li XY, He C, Zhu Y, et al. Role of gut microbiota on intestinal barrier function in acute pancreatitis [J]. World J Gastroenterol, 2020, 26(18): 2187-2193.
14
Zou M, Yang Z, Fan Y, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis [J]. Front Immunol, 2022, 13: 988326.
15
Besselink MG, van Santvoort HC, Buskens E, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial [J]. Lancet, 2008, 371(9613): 651-659.
16
Dang SC, Zhang JX, Qu JG, et al. Dynamic changes of IL-2/IL-10, sFas and expression of Fas in intestinal mucosa in rats with acute necrotizing pancreatitis [J]. World J Gastroenterol, 2008, 14(14): 2246-2250.
17
van den Berg FF, van Dalen D, Hyoju SK, et al. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate [J]. Gut, 2021, 70(5): 915-927.
18
Li H, Zhao L, Wang Y, et al. Roles, detection, and visualization of neutrophil extracellular traps in acute pancreatitis [J]. Front Immunol, 2022, 13: 974821.
19
Zhou L, Chen J, Mu G, et al. Heparin-binding protein (HBP) worsens the severity of pancreatic necrosis via up-regulated M1 macrophages activation in acute pancreatitis mouse models [J]. Bioengineered, 2021, 12(2): 11978-11986.
20
Huang Y, Xiao J, Cai T, et al. Immature granulocytes: a novel biomarker of acute respiratory distress syndrome in patients with acute pancreatitis [J]. J Crit Care, 2019, 50: 303-308.
21
Tremblay JA, Peron F, Kreitmann L, et al. A stratification strategy to predict secondary infection in critical illness-induced immune dysfunction: the REALIST score [J]. Ann Intensive Care, 2022, 12(1):76.
22
Zhang R, Shi J, Zhang R, et al. Expanded CD14hiCD16- immunosuppressive monocytes predict disease severity in patients with acute pancreatitis [J]. J Immunol, 2019, 202(9): 2578-2584.
23
Pan T, Zhou T, Li L, et al. Monocyte programmed death ligand-1 expression is an early marker for predicting infectious complications in acute pancreatitis [J]. Crit Care, 2017, 21(1): 186.
24
Chen Y, Li M, Liu J, et al. sPD-L1 Expression is associated with immunosuppression and infectious complications in patients with acute pancreatitis [J]. Scand J Immunol, 2017, 86(2): 100-106.
25
Xiao HL, Wang GX, Wang Y, et al. Dynamic blood presepsin levels are associated with severity and outcome of acute pancreatitis: a prospective cohort study [J]. World J Gastroenterol, 2022, 28(35): 5203-5216.
26
Ding L, Wan M, Wang D, et al. Myeloid-derived suppressor cells in patients with acute pancreatitis with increased inhibitory function [J]. Front Immunol, 2022, 13: 840620.
27
Zhao Z, Shen J, Zhang D, et al. The prognostic role of peripheral lymphocyte subsets in patients with acute pancreatitis [J]. Am J Med Sci, 2019, 357(3): 242-246.
28
Fonteh P, Smith M, Brand M. Adaptive immune cell dysregulation and role in acute pancreatitis disease progression and treatment [J]. Arch Immunol Ther Exp, 2018, 66 (3): 199-209.
29
Wei X, Yao W, Li H, et al. B and NK cells closely correlate with the condition of patients with acute pancreatitis [J]. Gastroenterol Res Pract, 2019, 2019: 7568410.
30
Bedrosian AS, Nguyen AH, Hackman M, et al. Dendritic cells promote pancreatic viability in mice with acute pancreatitis [J]. Gastroenterology, 2011, 141(5): 1915-1926. e1-e14.
31
Zhou J, Chen W, Liu Y, et al. Trajectories of lymphocyte counts in the early phase of acute pancreatitis are associated with infected pancreatic necrosis [J]. Clin Transl Gastroenterol, 2021, 12(9): e00405.
32
Ding L, Yang Y, Li H, et al. Circulating lymphocyte subsets induce secondary infection in acute pancreatitis [J]. Front Cell Infect Microbiol, 2020, 10: 128.
33
Damoiseaux J. The IL-2 - IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor [J]. Clin Immunol, 2020, 218: 108515.
34
Bao Y, Ge W. Correlation between serum levels of PTX-3, SIL-2R, inflammatory markers, and APACHE Ⅱ scores in patients with severe acute pancreatitis [J]. Medicine (Baltimore), 2022, 101(43): e31252.
35
Uehara S, Gothoh K, Handa H, et al. Immune function in patients with acute pancreatitis [J]. Gastroenterol Hepatol, 2003, 18(4): 363-370.
36
Yu X, Pan Y, Fei Q, et al. Serum soluble PD-1 plays a role in predicting infection complications in patients with acute pancreatitis [J]. Immun Inflamm Dis, 2021, 9(1): 310-318.
37
Qin Y, Pinhu L, You Y, et al. The role of Fas expression on the occurrence of immunosuppression in severe acute pancreatitis [J]. Dig Dis Sci, 2013, 58(11): 3300-3307.
38
Sharma M, Sachdev V, Singh N, et al. Alterations in intestinal permeability and endotoxemia in severe acute pancreatitis [J]. Trop Gastroenterol, 2012, 33(1): 45-50.
39
Qiu Z, Yu P, Bai B, et al. Regulatory B10 cells play a protective role in severe acute pancreatitis [J]. Inflamm Res, 2016, 65(8): 647-654.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 宫丹丹, 孙飞飞, 于健, 姜晓东. 重症急性胰腺炎死亡风险因素分析及风险评估模型建立[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 19-25.
[3] 孙亚慧, 李甜甜. 在重症急性胰腺炎患者继发感染中调节性T细胞/辅助性T细胞17失衡的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(06): 475-480.
[4] 王晓梅, 刘冰, 马丽琼, 卢祖静, 苗建军. 基于LASSO-Cox回归分析的非轻症急性胰腺炎死亡风险列线图预测模型的建立和临床应用效果分析[J/OL]. 中华普通外科学文献(电子版), 2024, 18(01): 44-50.
[5] 党军强, 杨雁灵, 汪庆强, 尚琳, 朱磊, 项红军. 主动经皮穿刺引流治疗重症急性胰腺炎并发急性坏死物积聚的疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 671-674.
[6] 郭明星, 徐烨, 徐菀佚, 赵莹, 刘冉佳, 潘晨, 崔向丽. 2017—2022年中国105家医院肾移植术后门诊受者免疫抑制剂用药分析[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 104-109.
[7] 张琳成, 詹启帆, 赵禹迪, 邵初晓, 凌孙彬, 徐骁. 肝癌肝移植术后免疫抑制方案的网状荟萃分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 362-371.
[8] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[9] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[10] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[11] 苏生林, 马金兰, 于弘明, 杨晓军. 单细胞测序技术在脓毒症免疫研究中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 279-286.
[12] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[13] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[14] 汪纾羽, 焦茹, 石运涛. 早期肠内营养和微生态免疫肠内营养对重症急性胰腺炎患者肾损伤的预防效果及影响因素[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 132-136.
[15] 叶禾清, 李杰, 张玉元, 胡炉淇, 吴白露, 李鑫, 叶书文, 李一帆, 高玥, 詹鹏超, 吕培杰, 李臻. 载药微球化疗栓塞联合多纳非尼及PD-1治疗中晚期大肝癌的疗效分析[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 212-216.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?