1 |
Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis [J]. Lancet, 2020, 396(10252): 726-734.
|
2 |
Zhuang Q, Huang L, Zeng Y, et al. Dynamic monitoring of immunoinflammatory response identifies immunoswitching characteristics of severe acute pancreatitis in rats [J]. Front Immunol, 2022, 13: 876168.
|
3 |
Yovtchev Y, Halacheva K, Dimitrov E, et al. Is it time for routinely tracking of early immunosuppression in tracking and prognosing patients with acute pancreatitis [J]. Pancreatology, 2018, 18(4): S97.
|
4 |
Sendler M, van den Brandt C, Glaubitz J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis [J]. Gastroenterology, 2020, 158(1): 253-269.
|
5 |
Sharma D, Jakkampudi A, Reddy R, et al. Association of systemic inflammatory and anti-inflammatory responses with adverse outcomes in acute pancreatitis: preliminary results of an ongoing study [J]. Dig Dis Sci, 2017, 62(12): 3468-3478.
|
6 |
Vaz J, Akbarshahi H, Andersson R. Controversial role of Toll-like receptors in acute pancreatitis [J]. World J Gastroenterol, 2013, 19(5):616-30.
|
7 |
Li J, Pan X, Yang J, et al. Enteral virus depletion modulates experimental acute pancreatitis via toll-like receptor 9 signaling [J]. Biochem Pharmacol, 2020, 171: 113710.
|
8 |
Shen Y, Cui NQ. Clinical observation of immunity in patients with secondary infection from severe acute pancreatitis [J]. Inflamm Res, 2012, 61(7): 743-748.
|
9 |
Zhao Q, Wei Y, Pandol SJ, et al. STING signaling promotes inflammation in experimental acute pancreatitis [J]. Gastroenterology, 2018, 154(6): 1822-1835.
|
10 |
Wu J, Chen YJ, Dobbs N, et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death [J]. J Exp Med, 2019, 216(4): 867-883.
|
11 |
Zhu Y, He C, Li X, et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice [J]. J Gastroenterol, 2019, 54(4): 347-358.
|
12 |
Sendler M, Wilden A, Glaubitz J, et al. Immunosuppression during severe acute pancreatitis is associated with a dramatic shift in intestinal microbiota composition and infected necrosis [J]. Pancreatology, 2020, 20(1): S24.
|
13 |
Li XY, He C, Zhu Y, et al. Role of gut microbiota on intestinal barrier function in acute pancreatitis [J]. World J Gastroenterol, 2020, 26(18): 2187-2193.
|
14 |
Zou M, Yang Z, Fan Y, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis [J]. Front Immunol, 2022, 13: 988326.
|
15 |
Besselink MG, van Santvoort HC, Buskens E, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial [J]. Lancet, 2008, 371(9613): 651-659.
|
16 |
Dang SC, Zhang JX, Qu JG, et al. Dynamic changes of IL-2/IL-10, sFas and expression of Fas in intestinal mucosa in rats with acute necrotizing pancreatitis [J]. World J Gastroenterol, 2008, 14(14): 2246-2250.
|
17 |
van den Berg FF, van Dalen D, Hyoju SK, et al. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate [J]. Gut, 2021, 70(5): 915-927.
|
18 |
Li H, Zhao L, Wang Y, et al. Roles, detection, and visualization of neutrophil extracellular traps in acute pancreatitis [J]. Front Immunol, 2022, 13: 974821.
|
19 |
Zhou L, Chen J, Mu G, et al. Heparin-binding protein (HBP) worsens the severity of pancreatic necrosis via up-regulated M1 macrophages activation in acute pancreatitis mouse models [J]. Bioengineered, 2021, 12(2): 11978-11986.
|
20 |
Huang Y, Xiao J, Cai T, et al. Immature granulocytes: a novel biomarker of acute respiratory distress syndrome in patients with acute pancreatitis [J]. J Crit Care, 2019, 50: 303-308.
|
21 |
Tremblay JA, Peron F, Kreitmann L, et al. A stratification strategy to predict secondary infection in critical illness-induced immune dysfunction: the REALIST score [J]. Ann Intensive Care, 2022, 12(1):76.
|
22 |
Zhang R, Shi J, Zhang R, et al. Expanded CD14hiCD16- immunosuppressive monocytes predict disease severity in patients with acute pancreatitis [J]. J Immunol, 2019, 202(9): 2578-2584.
|
23 |
Pan T, Zhou T, Li L, et al. Monocyte programmed death ligand-1 expression is an early marker for predicting infectious complications in acute pancreatitis [J]. Crit Care, 2017, 21(1): 186.
|
24 |
Chen Y, Li M, Liu J, et al. sPD-L1 Expression is associated with immunosuppression and infectious complications in patients with acute pancreatitis [J]. Scand J Immunol, 2017, 86(2): 100-106.
|
25 |
Xiao HL, Wang GX, Wang Y, et al. Dynamic blood presepsin levels are associated with severity and outcome of acute pancreatitis: a prospective cohort study [J]. World J Gastroenterol, 2022, 28(35): 5203-5216.
|
26 |
Ding L, Wan M, Wang D, et al. Myeloid-derived suppressor cells in patients with acute pancreatitis with increased inhibitory function [J]. Front Immunol, 2022, 13: 840620.
|
27 |
Zhao Z, Shen J, Zhang D, et al. The prognostic role of peripheral lymphocyte subsets in patients with acute pancreatitis [J]. Am J Med Sci, 2019, 357(3): 242-246.
|
28 |
Fonteh P, Smith M, Brand M. Adaptive immune cell dysregulation and role in acute pancreatitis disease progression and treatment [J]. Arch Immunol Ther Exp, 2018, 66 (3): 199-209.
|
29 |
Wei X, Yao W, Li H, et al. B and NK cells closely correlate with the condition of patients with acute pancreatitis [J]. Gastroenterol Res Pract, 2019, 2019: 7568410.
|
30 |
Bedrosian AS, Nguyen AH, Hackman M, et al. Dendritic cells promote pancreatic viability in mice with acute pancreatitis [J]. Gastroenterology, 2011, 141(5): 1915-1926. e1-e14.
|
31 |
Zhou J, Chen W, Liu Y, et al. Trajectories of lymphocyte counts in the early phase of acute pancreatitis are associated with infected pancreatic necrosis [J]. Clin Transl Gastroenterol, 2021, 12(9): e00405.
|
32 |
Ding L, Yang Y, Li H, et al. Circulating lymphocyte subsets induce secondary infection in acute pancreatitis [J]. Front Cell Infect Microbiol, 2020, 10: 128.
|
33 |
Damoiseaux J. The IL-2 - IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor [J]. Clin Immunol, 2020, 218: 108515.
|
34 |
Bao Y, Ge W. Correlation between serum levels of PTX-3, SIL-2R, inflammatory markers, and APACHE Ⅱ scores in patients with severe acute pancreatitis [J]. Medicine (Baltimore), 2022, 101(43): e31252.
|
35 |
Uehara S, Gothoh K, Handa H, et al. Immune function in patients with acute pancreatitis [J]. Gastroenterol Hepatol, 2003, 18(4): 363-370.
|
36 |
Yu X, Pan Y, Fei Q, et al. Serum soluble PD-1 plays a role in predicting infection complications in patients with acute pancreatitis [J]. Immun Inflamm Dis, 2021, 9(1): 310-318.
|
37 |
Qin Y, Pinhu L, You Y, et al. The role of Fas expression on the occurrence of immunosuppression in severe acute pancreatitis [J]. Dig Dis Sci, 2013, 58(11): 3300-3307.
|
38 |
Sharma M, Sachdev V, Singh N, et al. Alterations in intestinal permeability and endotoxemia in severe acute pancreatitis [J]. Trop Gastroenterol, 2012, 33(1): 45-50.
|
39 |
Qiu Z, Yu P, Bai B, et al. Regulatory B10 cells play a protective role in severe acute pancreatitis [J]. Inflamm Res, 2016, 65(8): 647-654.
|