切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (03) : 292 -297. doi: 10.3877/cma.j.issn.2096-1537.2023.03.010

所属专题: 重症医学

综述

宏基因组二代测序在脓毒症病原体诊断中的应用进展
杨翔, 郭兰骐, 谢剑锋, 邱海波()   
  1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科;210002 南京,解放军东部战区总医院干部病房一科
    210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2022-08-25 出版日期:2023-08-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 江苏省重症医学重点实验室项目(BM2020004); 江苏省重点研发计划(社会发展)重点项目--临床前沿技术(BE2019749)

Role of metagenomics next-generation sequencing in the pathogen diagnosis in sepsis

Xiang Yang, Lanqi Guo, Jianfeng Xie, Haibo Qiu()   

  1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Geriatrics, General Hospital of Eastern Theater Command, PLA, Nanjing 210002, China
    Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2022-08-25 Published:2023-08-28
  • Corresponding author: Haibo Qiu
引用本文:

杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J/OL]. 中华重症医学电子杂志, 2023, 09(03): 292-297.

Xiang Yang, Lanqi Guo, Jianfeng Xie, Haibo Qiu. Role of metagenomics next-generation sequencing in the pathogen diagnosis in sepsis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(03): 292-297.

脓毒症是威胁人类生命健康的重要疾病。早期、合理的抗生素使用是脓毒症治疗的重要环节。然而由于病原体种类繁多,快速、全面、精准的鉴定病原体是脓毒症诊疗过程中的难点。传统病原学检测手段因检测范围窄、目标单一、准确率低、阳性率低、检测周期长等因素,常导致疾病治疗延误或抗菌药物滥用,难以满足临床确定严重感染病原体的需要。宏基因组二代测序(mNGS)以其高通量、广覆盖、高精度等优势,能无偏倚性直接分析出标本中的病原微生物谱、丰度和分布情况,在疑难重症感染性疾病的诊断和治疗、未知病原体的鉴定、耐药基因监测方面展现出巨大的应用前景。本文从mNGS对各类感染性疾病的诊断应用、检测影响因素、存在问题等方面进行总结综述,以促进其在脓毒症病原体诊断方面更加合理的应用。

Sepsis is a vital disorder that threatens human life and health. Early and rational antibiotic use is essential for sepsis treatment. However, due to the wide variety of pathogens, rapid, comprehensive, and accurate identification of pathogens is a difficult task in diagnosis and treatment of sepsis. Traditional pathogenic surveillance often leads to delayed treatment or inappropriate antimicrobial therapy due to a narrow detection range, single target, low accuracy, low positive rate, and long detection period, making it challenging to meet the clinical needs of identifying the pathogens of serious infections. With its advantages of high throughput, comprehensive coverage, and high accuracy, mNGS can directly analyze the spectrum, abundance, and distribution of pathogenic microorganisms in specimens without bias and has shown great promise in the diagnosis and treatment of severe and complicated infectious diseases, such as identification of unknown pathogens, and drug resistance gene monitoring. This paper summarizes and reviews diagnostic applications of mNGS in various infectious diseases, the factors affecting detection and rational application in the pathogen diagnosis in sepsis.

1
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study [J]. Lancet, 2020, 395(10219): 200-211.
2
Zhou G, Zhou Y, Zhong C, et al. Retrospective analysis of 1, 641 cases of classic fever of unknown origin [J]. Ann Transl Med, 2020, 8(11): 690-690.
3
Pallen MJ. Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections [J]. Parasitology, 2014, 141(14): 1856-1862.
4
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019 [J]. N Engl J Med, 2020, 382(8): 727-733.
5
Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing [J]. N Engl J Med, 2014, 370(25): 2408-2417.
6
Miao Q, Ma Y, Wang Q, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice [J]. Clin Infect Dis, 2018, 67(suppl 2): S231-S240.
7
Salipante SJ, Hoogestraat DR, Abbott AN, et al. Coinfection of Fusobacterium nucleatum and Actinomyces israelii in mastoiditis diagnosed by next-generation DNA sequencing [J]. J Clin Microbiol, 2014, 52(5): 1789-1792.
8
Somasekar S, Lee D, Rule J, et al. Viral surveillance in serum samples from patients with acute liver failure by metagenomic next-generation sequencing [J]. Clin Infect Dis, 2017, 65(9): 1477-1485.
9
Long SW, Olsen RJ, Christensen PA, et al. Sequence analysis of 20, 453 severe acute respiratory syndrome coronavirus 2 genomes from the Houston Metropolitan Area identifies the emergence and widespread distribution of multiple isolates of all [J]. Am J Pathol, 2021, 191(6): 983-992.
10
Schlaberg R, Chiu CY, Miller S, et al. Validation of metagenomic next-generation sequencing tests for universal pathogen detection [J]. Arch Pathol Lab Med, 2017, 141(6): 776-786.
11
Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection [J]. Annu Rev Pathol, 2019, 14(1): 319-338.
12
Wilson MR, Sample HA, Zorn KC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis [J]. N Engl J Med, 2019, 380(24): 2327-2340.
13
Yu G, Wang X, Zhu P, et al. Comparison of the efficacy of metagenomic next-generation sequencing and Xpert MTB/RIF in the diagnosis of tuberculous meningitis [J]. J Microbiol Methods, 2021, 180: 106124.
14
Xing XW, Zhang JT, Ma YB, et al. Metagenomic next-generation sequencing for diagnosis of infectious encephalitis and meningitis: a large, prospective case series of 213 patients [J]. Front Cell Infect Microbiol, 2020, 10: 88.
15
Hu B, Tao Y, Shao Z, et al. A comparison of blood pathogen detection among droplet digital PCR, metagenomic next-generation sequencing, and blood culture in critically ill patients with suspected bloodstream infections [J]. Front Microbiol, 2021, 12: 641202.
16
Grumaz S, Grumaz C, Vainshtein Y, et al. Enhanced performance of next-generation sequencing diagnostics compared with standard of care microbiological diagnostics in patients suffering from septic shock [J]. Crit Care Med, 2019, 47(5): e394-e402.
17
Jing C, Chen H, Liang Y, et al. Clinical evaluation of an improved metagenomic next-generation sequencing test for the diagnosis of bloodstream infections [J]. Clin Chem, 2021, 67(8): 1133-1143.
18
Hogan CA, Yang S, Garner OB, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free dna for the diagnosis of infectious diseases: a multicenter retrospective cohort study [J]. Clin Infect Dis, 2020, 72(2): 239-245.
19
Rossoff J, Chaudhury S, Soneji M, et al. Noninvasive diagnosis of infection using plasma next-generation sequencing: a single-center experience [J]. Open Forum Infect Dis, 2019, 6(8): ofz327.
20
To RK, Ramchandar N, Gupta A, et al. Use of plasma metagenomic next-generation sequencing for pathogen identification in pediatric endocarditis [J]. Pediatr Infect Dis J, 2020, 40(5): 486-488.
21
Lee RA, Dhaheri FA, Pollock NR, et al. Assessment of the clinical utility of plasma metagenomic next-generation sequencing in a pediatric hospital population [J]. J Clin Microbiol, 2020, 58(7): e00419-e00420.
22
Cheng J, Hu H, Fang W, et al. Detection of pathogens from resected heart valves of patients with infective endocarditis by next-generation sequencing [J]. Int J Infect Dis, 2019, 83: 148-153.
23
Cai S, Yang Y, Pan J, et al. The clinical value of valve metagenomic next-generation sequencing when applied to the etiological diagnosis of infective endocarditis [J]. Ann Transl Med, 2021, 9(19): 1490-1490.
24
Blasi F, Garau J, Medina J, et al. Current management of patients hospitalized with community-acquired pneumonia across Europe: outcomes from REACH [J]. Respir Res, 2013, 14(1): 44.
25
van Boheemen S, van Rijn AL, Pappas N, et al. Retrospective validation of a metagenomic sequencing protocol for combined detection of RNA and DNA viruses using respiratory samples from pediatric patients [J]. J Mol Diagn, 2020, 22(2): 196-207.
26
Huang J, Jiang E, Yang D, et al. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions [J]. Infect Drug Resist, 2020, 13: 567-576.
27
Chen Y, Feng W, Ye K, et al. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary infectious pathogens from bronchoalveolar lavage samples [J]. Front Cell Infect Microbiol, 2021, 11: 541092.
28
Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients [J]. Eur J Clin Microbiol Infect Dis, 2019, 39(2): 369-374.
29
Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults [J]. Proc Natl Acad Sci U S A, 2018, 115(52): e12353-e12362.
30
Zhou H, Larkin PMK, Zhao D, et al. Clinical impact of metagenomic next-generation sequencing of bronchoalveolar lavage in the diagnosis and management of pneumonia [J]. J Mol Diagn, 2021, 23(10): 1259-1268.
31
Charalampous T, Kay GL, Richardson H, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection [J]. Nat Biotechnol, 2019, 37(7): 783-792.
32
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis [J]. J Infect, 2020, 81(4): 567-574.
33
Wang J, Han Y, Feng J. Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis [J]. BMC Pulm Med, 2019, 19(1): 252.
34
Chen X, Cao K, Wei Y, et al. Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci [J]. Infection, 2020, 48(4): 535-542.
35
Su SS, Chen XB, Zhou LP, et al. Diagnostic performance of the metagenomic next-generation sequencing in lung biopsy tissues in patients suspected of having a local pulmonary infection [J]. BMC Pulm Med, 2022, 22(1): 112.
36
Li H, Gao H, Meng H, et al. Detection of pulmonary infectious pathogens from lung biopsy tissues by metagenomic next-generation sequencing [J]. Front Cell Infect Microbiol, 2018, 8: 205.
37
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients [J]. Am J Respir Crit Care Med, 2018, 197(4): 524-528.
38
Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing [J]. J Bone Joint Surg Am, 2018, 100(2): 147-154.
39
Cai Y, Fang X, Chen Y, et al. Metagenomic next generation sequencing improves diagnosis of prosthetic joint infection by detecting the presence of bacteria in periprosthetic tissues [J]. Int J Infect Dis, 2020, 96: 573-578.
40
Huang ZD, Zhang ZJ, Yang B, et al. Pathogenic detection by metagenomic next-generation sequencing in osteoarticular infections [J]. Front Cell Infect Microbiol, 2020, 10: 471.
41
Tarabichi M, Shohat N, Goswami K, et al. Can next generation sequencing play a role in detecting pathogens in synovial fluid? [J]. Bone Joint J, 2018, 100-B(2): 127-133.
42
Wang C, Huang Z, Li W, et al. Can metagenomic next-generation sequencing identify the pathogens responsible for culture-negative prosthetic joint infection? [J]. BMC Infect Dis, 2020, 20(1): 253.
43
De Waele J, Lipman J, Sakr Y, et al. Abdominal infections in the intensive care unit: characteristics, treatment and determinants of outcome [J]. BMC Infect Dis, 2014, 14: 420.
44
Li D, Gai W, Zhang J, et al. Metagenomic next-generation sequencing for the microbiological diagnosis of abdominal sepsis patients [J]. Front Microbiol, 2022, 13: 816631.
45
Kujiraoka M, Kuroda M, Asai K, et al. Comprehensive diagnosis of bacterial infection associated with acute cholecystitis using metagenomic approach [J]. Front Microbiol, 2017, 8: 685.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[3] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[4] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[7] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[8] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[9] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[10] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[11] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[12] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[13] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?