切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (04) : 379 -384. doi: 10.3877/cma.j.issn.2096-1537.2023.04.007

综述

Gasdermin蛋白家族在脓毒症细胞焦亡中的作用研究进展
孙骎, 杨毅, 彭菲()   
  1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-08-28 出版日期:2023-11-28
  • 通信作者: 彭菲
  • 基金资助:
    国家自然科学基金项目(82202393); 国家重点研发计划项目(2022YFC2504400); 江苏省重点研发计划项目(BE2022854)

Research progress on the role of the Gasdermin protein family in pyroptosis in sepsis

Qin Sun, Yi Yang, Fei Peng()   

  1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2023-08-28 Published:2023-11-28
  • Corresponding author: Fei Peng
引用本文:

孙骎, 杨毅, 彭菲. Gasdermin蛋白家族在脓毒症细胞焦亡中的作用研究进展[J/OL]. 中华重症医学电子杂志, 2023, 09(04): 379-384.

Qin Sun, Yi Yang, Fei Peng. Research progress on the role of the Gasdermin protein family in pyroptosis in sepsis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(04): 379-384.

脓毒症(sepsis)是一种由严重感染引起的宿主失控的炎症反应,从而导致多器官功能障碍的一组综合征。细胞焦亡是一种程序性细胞死亡方式,在脓毒症级联放大的炎症反应中发挥重要作用。Gasdermin蛋白是近年来发现的可被经典焦亡途径和非经典焦亡激活并发生剪切,从而在细胞质膜上打孔,最终造成了细胞的炎性程序性死亡的关键蛋白,是细胞焦亡的执行者。深化对Gasdermin蛋白的认识、理解Gasdermin蛋白在脓毒症失控炎症反应中的作用,将有助于进一步了解焦亡相关的失控炎症反应在脓毒症发生发展中的作用及Gasdermin蛋白在脓毒症病理生理机制中的作用,并为后续脓毒症的炎症反应调控及治疗提供新的思路。本文对Gasdermin蛋白家族在脓毒症细胞焦亡中的作用和机制作一综述,并对其作为炎症免疫调控治疗的靶点进行展望。

Sepsis is a syndrome characterized by uncontrolled host inflammation triggered by severe infection, often leads to multi-organ dysfunction. Pyroptosis is a programmed cell death mechanism that significantly amplifies the inflammatory cascade during sepsis. Gasdermin proteins, discovered recently, play pivotal roles in executing this inflammatory cell death process by creating pores in the cytoplasmic membrane upon cleavage, activated through both canonical and non-canonical pyroptosis pathways. Enhancing our comprehension of Gasdermin proteins is crucial to grasp their contribution to the uncontrolled inflammatory response in sepsis. Such an understanding is vital to unravel the connection between pyroptosis-driven inflammation and the onset and progression of sepsis. Additionally, it would elucidate the role of Gasdermin proteins in the pathophysiological mechanism of sepsis, thereby providing new insights for the subsequent regulation and treatment of the inflammatory response in sepsis. We reviewed the Gasdermin protein family's role and mechanisms in pyroptosis in sepsis. It also highlights the potential for Gasdermins as targets for immune modulation in combating inflammation in sepsis.

1
Goodacre S, Fuller G, Conroy S, et al. Diagnosis and management of sepsis in the older adult [J]. BMJ, 2023, 382: e075585.
2
Zampieri FG, Bagshaw SM, Semler MW. Fluid therapy for critically ill adults with sepsis: a review [J]. JAMA, 2023, 329(22): 1967-1980.
3
Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis [J]. Immunity, 2018, 49(4): 740-753.e7.
4
Yan J, Zhang J, Wang Y, et al. Rapidly inhibiting the inflammatory cytokine storms and restoring cellular homeostasis to alleviate sepsis by blocking pyroptosis and mitochondrial apoptosis pathways [J]. Adv Sci (Weinh), 2023, 10(14): e2207448.
5
Zhang H, Zeng L, Xie M, et al. TMEM173 drives lethal coagulation in sepsis [J]. Cell Host Microbe, 2020, 27(4): 556-570.e6.
6
Evavold CL, Ruan J, Tan Y, et al. The poreforming protein Gasdermin D regulates interleukin-1 secretion from living macrophages [J]. Immunity, 2018, 48(1): 35-44.
7
Defourny J, Aghaie A, Perfettini I, et al. Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage [J]. Proc Natl Acad Sci U S A, 2019, 116(16): 8010-8017.
8
Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through Caspase-3 cleavage of a gasdermin [J]. Nature, 2017, 547(7661): 99-103.
9
Zhang X, Zhang P, An L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME dependent pyroptosis [J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413.
10
Devant P, Kagan JC. Molecular mechanisms of gasdermin D pore-forming activity [J]. Nat Immunol, 2023, 24(7): 1064-1075.
11
Zanoni I, Tan Y, Di Gioia M, et al. An endogenous Caspase-11 ligand elicits interleukin-1 release from living dendritic cells [J]. Science, 2016, 352(6290): 1232-1236.
12
Schnappauf O, Chae JJ, Kastner DL, et al. The pyrin inflammasome in health and disease [J]. Front Immunol, 2019, 10: 1745.
13
Reygaerts T, Laohamonthonkul P, Hrovat-Schaale K, et al. Pyrin variant E148Q potentiates inflammasome activation and the effect of pathogenic mutations in cis [J]. Rheumatology (Oxford), 2023, kead376.
14
Xue Y, Enosi Tuipulotu D, Tan WH, et al. Emerging activators and regulators of inflammasomes and pyroptosis [J]. Trends Immunol, 2019, 40(11): 1035-1052.
15
Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a Caspase-1-activating inflammasome with ASC [J]. Nature, 2009, 458(7237): 514-518.
16
Broz P, Ruby T, Belhocine K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of Caspase-1 [J]. Nature, 2012, 490(7419): 288-291.
17
Saeki N, Kuwahara Y, Sasaki H, et al. Gasdermin (GSDM) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells [J]. Mamm Genome, 2000, 11(9): 718-724.
18
Van Laer L, Huizing EH, Verstreken M, et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5 [J]. Nat Genet, 1998, 20(2): 194-197.
19
Newton K, Dixit VM, Kayagaki N. Dying cells fan the flames of inflammation [J]. Science, 2021, 374(6571): 1076-1080.
20
Liu X, Lieberman J. Knocking'em dead: pore-forming proteins in immune defense [J]. Annu Rev Immunol, 2020, 38: 455-485.
21
Privitera G, Rana N, Armuzzi A, et al. The gasdermin protein family: emerging roles in gastrointestinal health and disease [J]. Nat Rev Gastroenterol Hepatol, 2023, 20(6): 366-387.
22
Saeki N, Usui T, Aoyagi K, et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium [J]. Genes Chromosomes Cancer, 2009, 48(3): 261-271.
23
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores [J]. Nature, 2016, 535(7610): 153-158.
24
Ross C, Chan AH, von Pein J, et al. Dimerization and auto-processing induce Caspase-11 protease activation within the non-canonical inflammasome [J]. Life Sci Alliance, 2018, 1: 1e10.
25
Liu Z, Wang C, Rathway J, et al. Crystal structures of the full-length murine and human Gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization [J]. Immunity, 2019, 51(1): 43-49.e4.
26
Shantha JG, Hayek BR, Crozier I, et al. Development of a screening eye clinic for Ebola virus disease survivors: lessons learned and rapid implementation at ELWA Hospital in Monrovia, Liberia 2015 [J]. PLoS Negl Trop Dis, 2019, 13(3): e0007209.
27
Sato H, Koide T, Masuya H, et al. A new mutation Rim3 resembling Re(den) is mapped close to retinoic acid receptor alpha (Rara) gene on mouse chromosome 11 [J]. Mamm Genome, 1998, 9(1): 20-25.
28
Moreno-Moral A, Bagnati M, Koturan S, et al. GSDMA changes in macrophage transcriptome associate with systemic sclerosis and mediate contribution to disease risk [J]. Ann Rheum Dis, 2018, 77(4): 596-601.
29
Li X, Christenson SA, Modena B, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways [J]. J Allergy Clin Immunol, 2021, 147(3): 894-909.
30
Hu Y, Jin S, Cheng L, et al. Autoimmune disease variants regulate GSDMB gene expression in human immune cells and whole blood [J]. Proc Natl Acad Sci U S A, 2017, 114(38): E7860-E7862.
31
Liu X, Zhang L, Zhu B, et al. Role of GSDM family members in airway epithelial cells of lung diseases: a systematic and comprehensive transcriptomic analysis [J]. Cell Biol Toxicol, 2023. Online ahead of print.
32
Ai YL, Wang WJ, Liu FJ, et al. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P [J]. Cell Res. 2023. Online ahead of print.
33
Dellinger RP, Rhodes A, Evans L, et al. Surviving sepsis campaign [J]. Crit Care Med, 2023, 51(4): 431-444.
34
Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 775-787.
35
Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory Caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660-665.
36
Dai Z, Liu WC, Chen XY, et al. Gasdermin D-mediated pyroptosis: mechanisms, diseases, and inhibitors [J]. Front Immunol, 2023, 14: 1178662.
37
Mandal P, Feng Y, Lyons JD, et al. Caspase-8 collaborates with Caspase-11 to drive tissue damage and execution of endotoxic shock [J]. Immunity. 2018, 49(1): 42-55.e6.
38
Yang M, Jiang H, Ding C, et al. STING activation in platelets aggravates septic thrombosis by enhancing platelet activation and granule secretion [J]. Immunity, 2023, 56(5): 1013-1026.e6.
39
Su M, Chen C, Li S, et al. Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis [J]. Nat Cardiovasc Res, 2022, 1(8): 732-747.
40
Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, et al. Succination inactivates gasdermin D and blocks pyroptosis [J]. Science, 2020, 369(6511): 1633-1637.
41
Patel AK, Balasanova AA. Treatment of alcohol use disorder [J]. JAMA, 2021, 325(6): 596.
42
Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4 [J]. Nature, 2017, 552(7684): 194-199.
43
Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation [J]. Nat Immunol, 2020, 21(7): 736-745.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[7] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[8] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[9] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[10] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[11] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[12] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[15] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
阅读次数
全文


摘要