| 1 | Singer M, Deutschman CS, Seymour CW, et al.The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J].JAMA, 2016, 315(8): 801. | 
																													
																						| 2 | GBD 2017 Disease and Injury Incidence and Prevalence Collaborators.Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J].Lancet, 2018, 392(10159): 1789-1858. | 
																													
																						| 3 | van der Poll T, Shankar-Hari M, Wiersinga WJ.The immunology of sepsis [J].Immunity, 2021, 54(11): 2450-2464. | 
																													
																						| 4 | Conway Morris A, Datta D, Shankar-Hari M, et al.Cell-surface signatures of immune dysfunction risk-stratify critically ill patients:INFECT study [J].Intensive Care Med, 2018, 44(5): 627-635. | 
																													
																						| 5 | Drewry AM, Samra N, Skrupky LP, et al.Persistent lymphopenia after diagnosis of sepsis predicts mortality [J].Shock (Augusta, Ga.), 2014,42(5): 383-391. | 
																													
																						| 6 | Jiang J, Du H, Su Y, et al.Nonviral infection-related lymphocytopenia for the prediction of adult sepsis and its persistence indicates a higher mortality [J].Medicine, 2019, 98(29): e16535. | 
																													
																						| 7 | Xue M, Xie J, Liu L, et al.Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: a prospective observational study [J].J Transl Med,2019, 17(1): 57. | 
																													
																						| 8 | Guidos C.Thymus and T-lymphocyte development: what is new in the 21st century? [J].Immunol Rev, 2006, 209(1): 5-9. | 
																													
																						| 9 | Kooshesh KA, Foy BH, Sykes DB, et al.Health consequences of thymus removal in adults [J].N Engl J Med, 2023, 389(5): 406-417. | 
																													
																						| 10 | van den Broek T, Borghans JAM, van Wijk F.The full spectrum of human naive T cells [J].Nat Rev Immunol, 2018, 18(6): 363-373. | 
																													
																						| 11 | Taub DD, Longo DL.Insights into thymic aging and regeneration [J].Immunol Rev, 2005, 205(1): 72-93. | 
																													
																						| 12 | Gustafson CE, Kim C, Weyand CM, et al.Influence of immune aging on vaccine responses [J].J Allergy Clin Immunol, 2020, 145(5): 1309-1321. | 
																													
																						| 13 | Zhang H, Weyand CM, Goronzy JJ.Hallmarks of the aging T-cell system [J].FEBS J, 2021, 288(24): 7123-7142. | 
																													
																						| 14 | Sauce D, Larsen M, Fastenackels S, et al.Evidence of premature immune aging in patients thymectomized during early childhood [J].J Clin Invest, 2009, 119(10): 3070-3078. | 
																													
																						| 15 | Gray DHD, Seach N, Ueno T, et al.Developmental kinetics, turnover,and stimulatory capacity of thymic epithelial cells [J].Blood, 2006,108(12): 3777-3785. | 
																													
																						| 16 | Savino W.The thymus is a common target organ in infectious diseases[J].PLoS Pathog, 2006, 2(6): e62. | 
																													
																						| 17 | Wang S, Huang K, Lin Y, et al.Sepsis-induced apoptosis of the thymocytes in mice [J].J Immunol, 1994, 152(10): 5014-5021. | 
																													
																						| 18 | Billard MJ, Gruver AL, Sempowski GD.Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses [J].PLoS One, 2011, 6(3): e17940. | 
																													
																						| 19 | Sommer N, Noack S, Hecker A, et al.Decreased thymic output contributes to immune defects in septic patients [J].J Clin Med, 2020,9(9): 2695. | 
																													
																						| 20 | Cabrera-Perez J, Condotta SA, James BR, et al.Alterations in antigen-specific naive CD4 T cell precursors after sepsis impairs their responsiveness to pathogen challenge [J].J Immunol, 2015, 194(4):1609-1620. | 
																													
																						| 21 | Hick RW, Gruver AL, Ventevogel MS, et al.Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharideinduced thymic atrophy [J].J Immunol, 2006, 177(1): 169-176. | 
																													
																						| 22 | Cuvelier P, Roux H, Couëdel-Courteille A, et al.Protective reactive thymus hyperplasia in COVID-19 acute respiratory distress syndrome[J].Crit Care, 2021, 25(1): 4. | 
																													
																						| 23 | Cardenas Palomo LF, de Souza Matos DC, Chaves Leal E, et al.Lymphocyte subsets and cell proliferation analysis in rabies-infected mice [J].J Clin Lab Immunol, 1995, 46(2): 49-61. | 
																													
																						| 24 | Wang D, Müller N, McPherson KG, et al.Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells [J].J Immunol, 2006, 176(3): 1695-1702. | 
																													
																						| 25 | Oberholzer C, Tschoeke SK, Moldawer LL, et al.Local thymic Caspase-9 inhibition improves survival during polymicrobial sepsis in mice [J].J Mol Med (Berl), 2006, 84(5): 389-395. | 
																													
																						| 26 | Tschoeke SK, Oberholzer C, LaFace D, et al.Endogenous IL-10 regulates sepsis-induced thymic apoptosis and improves survival in septic IL-10 null mice [J].Scand J Immunol, 2008, 68(6): 565-571. | 
																													
																						| 27 | Roggero E, Pérez AR, Tamae-Kakazu M, et al.Endogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection [J].J Endocrinol, 2006, 190(2): 495-503. | 
																													
																						| 28 | Chen W, Kuolee R, Austin JW, et al.Low dose aerosol infection of mice with virulent type A Francisella tularensis induces severe thymus atrophy and CD4+ CD8+ thymocyte depletion [J].Mol Microbiol,2005, 39(5-6): 189-196. | 
																													
																						| 29 | Kadouri N, Nevo S, Goldfarb Y, et al.Thymic epithelial cell heterogeneity:TEC by TEC [J].Nat Rev Immunol, 2020, 20(4): 239-253. | 
																													
																						| 30 | Zhou YJ, Peng H, Chen Y, et al.Alterations of thymic epithelial cells in lipopolysaccharide-induced neonatal thymus involution [J].Chin Med J (Engl), 2016, 129(1): 59-65. | 
																													
																						| 31 | Xu L, Wei C, Chen Y, et al.IL-33 induces thymic involution-associated naive T cell aging and impairs host control of severe infection [J].Nat Commun, 2022, 13(1): 6881. | 
																													
																						| 32 | Wilkinson T, Dixon R, Page C, et al.ACCORD: a multicentre,seamless, phase 2 adaptive randomisation platform study to assess the efficacy and safety of multiple candidate agents for the treatment of COVID-19 in hospitalised patients: a structured summary of a study protocol for a randomised controlled trial [J].Trials, 2020, 21(1): 691. | 
																													
																						| 33 | Chaudhry MS, Velardi E, Dudakov JA, et al.Thymus: the next (re)generation [J].Immunol Rev, 2016, 271(1): 56-71. | 
																													
																						| 34 | Gruver AL, Sempowski GD.Cytokines, leptin, and stress-induced thymic atrophy [J].J Leukoc Biol, 2008, 84(4): 915-923. | 
																													
																						| 35 | Sportès C, Hakim FT, Memon SA, et al.Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets [J].J Exp Med, 2008, 205(7): 1701-1714. | 
																													
																						| 36 | Hennion-Tscheltzoff O, Leboeuf D, Gauthier SD, et al.TCR triggering modulates the responsiveness and homeostatic proliferation of CD4+thymic emigrants to IL-7 therapy [J].Blood, 2013, 121(23): 4684-4693. | 
																													
																						| 37 | Finch PW, Rubin JS.Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair [A]//Adv Cancer Res [M].Elsevier, 2004, 91: 69-136. | 
																													
																						| 38 | Wils EJ, Aerts-Kaya FSF, Rombouts EJC, et al.Keratinocyte growth factor and stem cell factor to improve thymopoiesis after autologous CD34+ cell transplantation in rhesus macaques [J].Biol Blood Marrow Transplant, 2012, 18(1): 55-65. | 
																													
																						| 39 | Redelman D, Welniak LA, Taub D, et al.Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network [J].Cell Immunol, 2008, 252(1-2):111-121. | 
																													
																						| 40 | Aiuti A, Tavian M, Cipponi A, et al.Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lymphohematopoietic progenitors [J].Eur J Immunol, 1999, 29(6):1823-1831. | 
																													
																						| 41 | Napolitano LA, Schmidt D, Gotway MB, et al.Growth hormone enhances thymic function in HIV-1-infected adults [J].J Clin Invest,2008, 118(3): 1085-1098. | 
																													
																						| 42 | Sutherland JS, Goldberg GL, Hammett MV, et al.Activation of thymic regeneration in mice and humans following androgen blockade [J].J Immunol, 2005, 175(4): 2741-2753. | 
																													
																						| 43 | Sutherland JS, Spyroglou L, Muirhead JL, et al.Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade [J].Clin Cancer Res, 2008, 14(4): 1138-1149. |