切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 271 -278. doi: 10.3877/cma.j.issn.2096-1537.2024.03.011

综述

髓源性抑制细胞在脓毒症中的研究进展
刘娟丽1, 马四清2, 乌仁塔娜3,()   
  1. 1. 810007 西宁,青海省人民医院重症医学科;810001 西宁,青海大学高原医学研究中心
    2. 810007 西宁,青海省人民医院重症医学科
    3. 810001 西宁,青海大学高原医学研究中心
  • 收稿日期:2023-06-18 出版日期:2024-08-28
  • 通信作者: 乌仁塔娜
  • 基金资助:
    青海省高原医学应用基础重点实验室(青海-犹他高原医学联合重点实验室)项目(2022-ZJ-Y15); 青海省卫生健康委员会指导性课题(2020-wjzdx-01); 青海省高原重症医学重点实验室项目(2020-81)

Research progress of myeloid derived suppressor cells in sepsis

Juanli Liu1, Siqing Ma2, Wurentana3,()   

  1. 1. Department of Critical Care Medicine, Qinghai Provincial People's Hospital, Xining 810007, China; Plateau Medical Center of Qinghai University, Xining 810001, China
    2. Department of Critical Care Medicine, Qinghai Provincial People's Hospital, Xining 810007, China
    3. Plateau Medical Center of Qinghai University, Xining 810001, China
  • Received:2023-06-18 Published:2024-08-28
  • Corresponding author: Wurentana
引用本文:

刘娟丽, 马四清, 乌仁塔娜. 髓源性抑制细胞在脓毒症中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 271-278.

Juanli Liu, Siqing Ma, Wurentana. Research progress of myeloid derived suppressor cells in sepsis[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(03): 271-278.

脓毒症是收住ICU的主要原因,从脓毒症定义来看,脓毒症始发于感染,发展于机体的免疫反应失调,恶化在组织和器官。脓毒症的发病机制复杂,多种机制参与其病理生理过程,机体的免疫状态严重失衡。随着ICU医师对脓毒症的不断认识及医疗技术的快速提升,脓毒症患者一般能度过早期的炎症风暴,而后期因免疫抑制导致二次感染,从而增加了病死率。目前针对脓毒症的研究主要集中在免疫抑制及寻找免疫调节治疗两个方面。本文就近年来髓源性抑制细胞(MDSC)的命名、来源以及在脓毒症免疫中的研究进展进行综述,为脓毒症免疫失调寻找潜在的治疗方法提供重要的理论基础。

Sepsis is the main cause of ICU admission. Sepsis originates from an infection and progresses due to host desregulated immune response, ultimately leading to deterioration in tissues and organs. The pathogenesis of sepsis is complicate, with multiple mechanisms involved in its pathological and physiological processes. The immune state of the body is significantly disrupted. Thanks to the ongoing advancements in medical technology and the increasing knowledge of sepsis by ICU physicians, sepsis patients can typically endure the initial inflammatory response. However, in the later stages, they are susceptible to secondary infections due to immune suppression, which still carries a significant risk of mortality. At present, the research on sepsis mainly focuses on immunosuppression and immunomodulatory strategies. We review the nomenclature, origin, and research progress of myeloid suppressor cells (MDSCs) in sepsis in this manuscript. It also presents the theoretical foundation for future treatments of sepsis-related immune dysfunctions.

图1 MDSC分化注:MDSC为髓源性抑制细胞;STAT3/JAK为信号转导与转录激活因子3/Janus激酶
图2 脓毒症中MDSC介导免疫抑制的分子机制注:MDSC为髓源性抑制细胞
1
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity [J]. Nat Rev Immunol, 2021, 21(8): 485-498.
2
Krystal G, Sly L, Antignano F, et al. Re: the terminology issue for myeloid-derived suppressor cells [J]. Cancer Res, 2007, 67(8): 3986.
3
Schrijver IT, Théroude C, Roger T. Myeloid-derived suppressor cells in sepsis [J]. Front Immunol, 2019, 10: 327.
4
Barreda DR, Hanington PC, Belosevic M. Regulation of myeloid development and function. by colony stimulating factors [J]. Dev Comp Immunol, 2004, 28(5): 509-554.
5
Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer [J]. J Immunol, 2001, 166(1): 678-689.
6
Luan Y, Mosheir E, Menon MC, et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+ Foxp3+ Treg expansion [J]. Am J Transplant, 2013, 13(12): 3123-3131.
7
Condamine T, Dominguez GA, Youn JI, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients [J]. Sci Immunol, 2016, 1(2): aaf8943.
8
Esher SK, Fidel PL Jr, Noverr MC. Candida/Staphylococcal polymicrobial intra-abdominal infection: pathogenesis and perspectives for a novel form of trained innate immunity [J]. J Fungi (Basel), 2019, 5(2): 37.
9
Condamine T, Mastio J, Gabrilovich DI, Transcriptional regulation of myeloid-derived suppressor cells [J]. J Leukoc Biol, 2015, 98(6): 913-922.
10
Ruan WS, Xu J, Lu YQ. Prospect of using deep learning for predicting differentiation of myeloid progenitor cells after sepsis [J]. Chin Med J (Engl), 2019, 132(15): 1862-1864.
11
Waeckel L, Venet F, Gossez M, et al. Delayed persistence of elevated monocytic MDSC associates with deleterious outcomes in septic shock: a retrospective cohort study [J]. Crit Care, 2020, 24(1): 132.
12
Xu J, Peng Y, Yang M, et al. Increased levels of myeloid-derived suppressor cells in esophageal cancer patients is associated with the complication of sepsis [J]. Biomed Pharmacother, 2020, 125: 109864.
13
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J]. Nat Commun, 2016, 7: 12150.
14
Mairhofer DG, Ortner D, Tripp CH, et al. Impaired gp100-specific CD8+T-cell responses in the presence of myeloid-derived suppressor cells in a spontaneous mouse melanoma model [J]. J Invest Dermatol, 2015, 135(11): 2785-2793.
15
Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice [J]. J Immunol, 2008, 181(8): 5791-5802.
16
Ghnewa YG, Fish M, Jennings A, et al. Goodbye SIRS? Innate, trained and adaptive immunity and pathogenesis of organ dysfunction [J]. Med Klin Intensivmed Notfmed, 2020, 115(Suppl 1): 10-14.
17
Rodriguez PC, Ernstoff MS, Hernandez C, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes [J]. Cancer Res, 2009, 69(4): 1553-1560.
18
Yang R, Cai Z, Zhang Y, et al. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells [J]. Cancer Res, 2006, 66(13): 6807-6815.
19
Ochoa AC, Zea AH, Hernandez C, et al. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma [J]. Clin Cancer Res, 2007, 13(2 Pt 2): 721s-726s.
20
Bronte V, Serafini P, Mazzoni A, et al. L-arginine metabolism in myeloid cells controls T-lymphocyte functions [J]. Trends Immunol, 2003, 24(6): 302-306.
21
Bingisser RM, Tilbrook PA, Holt PG, et al. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the JAK3/STAT5 signaling pathway [J]. J Immunol, 1998, 160(12): 5729-5734.
22
Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients [J]. Cancer Res, 2001, 61(12): 4756-4760.
23
Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion [J]. Cancer Res, 2005, 65(8): 3044-3048.
24
Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF [J]. Eur J Immunol, 2010, 40(1): 22-35.
25
Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity [J]. Blood, 2008, 111(8): 4233-4244.
26
Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer [J]. Nat Med, 2007, 13(7): 828-835.
27
Rastad JL, Green WR. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β [J]. Virology, 2016, 499: 9-22.
28
Ohl K, Tenbrock K. Reactive oxygen species as regulators of MDSC-mediated immune suppression [J]. Front Immunol, 2018, 9: 2499.
29
Wang D, DuBois RN. The role of prostaglandin E2 in tumor-associated immunosuppression [J]. Trends Mol Med, 2016, 22(1): 1-3.
30
Krishnamoorthy M, Gerhardt L, Maleki Vareki S. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy [J]. Cells, 2021, 10(5): 1170.
31
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age [J]. Nat Immunol, 2018, 19(2): 108-119.
32
Hollen MK, Stortz JA, Darden D, et al. Myeloid-derived suppressor cell function and epigenetic expression evolves over time after surgical sepsis [J]. Crit Care, 2019, 23(1): 355.
33
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression [J]. Nat Rev Nephrol, 2018, 14(2): 121-137.
34
Janols H, Bergenfelz C, Allaoui R, et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases [J]. J Leukoc Biol, 2014, 96(5): 685-693.
35
Mathias B, Delmas AL, Ozrazgat-Baslanti T, et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock [J]. Ann Surg, 2017, 265(4): 827-834.
36
Patera AC, Drewry AM, Chang K, et al. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or expression and can be restored by antibodies targeting PD-1 or PD-L1 [J]. J Leukoc Biol, 2016, 100(6): 1239-1254.
37
Uhel F, Azzaoui I, Grégoire M, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis [J]. Am J Respir Crit Care Med, 2017, 196(3): 315-327.
38
Coudereau R, Waeckel L, Cour M, et al. Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome [J]. J Leukoc Biol, 2022, 111(2): 489-496.
39
Darcy CJ, Minigo G, Piera KA, et al. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients [J]. Crit Care, 2014, 18(4): R163.
40
Guérin E, Orabona M, Raquil MA, et al. Circulating immature granulocytes with T-cell killing functions predict sepsis deterioration [J]. Crit Care Med, 2014, 42(9): 2007-2018.
41
Ruan WS, Feng MX, Xu J, et al. Early activation of myeloid-derived suppressor cells participate in sepsis-induced immune suppression via PD-L1/PD-1 axis [J]. Front Immunol, 2020, 11: 1299.
42
Schrijver IT, Karakike E, Théroude C, et al. High levels of monocytic myeloid-derived suppressor cells are associated with favorable outcome in patients with pneumonia and sepsis with multi-organ failure [J]. Intensive Care Med Exp, 2022, 10(1): 5.
43
De Zuani M, Hortová-Kohoutková M, Andrejčinová I, et al. Human myeloid-derived suppressor cell expansion during sepsis is revealed by unsupervised clustering of flow cytometric data [J]. Eur J Immunol, 2021, 51(7): 1785-1791.
44
Poe SL, Arora M, Oriss TB, et al. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia [J]. Mucosal Immunol, 2013, 6(1): 189-199.
45
Schwarz J, Scheckenbach V, Kugel H, et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) accumulate in cord blood of preterm infants and remain elevated during the neonatal period [J]. Clin Exp Immunol, 2018, 191(3): 328-337.
46
He YM, Li X, Perego M, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation [J]. Nat Med, 2018, 24(2): 224-231.
47
Leiber A, Schwarz J, Köstlin N, et al. Neonatal myeloid derived suppressor cells show reduced apoptosis and immunosuppressive activity upon infection with Escherichia coli [J]. Eur J Immunol, 2017, 47(6): 1009-1021.
48
Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms [J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600.
49
Weber R, Umansky V. Fighting infant infections with myeloid-derived suppressor cells [J]. J Clin Invest, 2019, 129(10): 4080-4082.
50
Liu Y, Perego M, Xiao Q, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice [J]. J Clin Invest, 2019, 129(10): 4261-4275.
51
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (COVID-19) [J]. Front Immunol, 2020, 11: 827.
52
Falck-Jones S, Vangeti S, Yu M, et al. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity [J]. J Clin Invest, 2021, 131(6): e144734.
53
Vanderbeke L, Van Mol P, Van Herck Y, et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity [J]. Nat Commun, 2021, 12(1): 4117.
54
Thompson EA, Cascino K, Ordonez AA, et al. Metabolic programs define dysfunctional immune responses in severe COVID-19 patients [J]. Cell Rep, 2021, 34(11): 108863.
55
Reizine F, Lesouhaitier M, Gregoire M, et al. SARS-CoV-2-induced ARDS associates with MDSC expansion, lymphocyte dysfunction, and arginine shortage [J]. J Clin Immunol, 2021, 41(3): 515-525.
56
Jiménez-Cortegana C, Liró J, Palazón-Carrión N, et al. Increased blood monocytic myeloid derived suppressor cells but low regulatory t lymphocytes in patients with mild COVID-19 [J]. Viral Immunol, 2021, 34(9): 639-645.
57
Sacchi A, Grassi G, Bordoni V, et al. Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome [J]. Cell Death Dis, 2020, 11(10): 921.
58
Agrati C, Sacchi A, Bordoni V, et al. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19) [J]. Cell Death Differ, 2020, 27(11): 3196-3207.
59
Park MJ, Lee SH, Kim EK, et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice [J]. Sci Rep, 2018, 8(1): 3753.
60
Tebartz C, Horst SA, Sparwasser T, et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection [J]. J Immunol, 2015, 194(3): 1100-1111.
61
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to. Staphylococcus aureus orthopedic biofilm infection [J]. J Immunol, 2014, 192(8): 3778-3792.
62
Zhang C, Lei GS, Shao S, et al. Accumulation of myeloid-derived suppressor cells in the. lungs during Pneumocystis pneumonia [J]. Infect Immun, 2012, 80(10): 3634-3641.
63
Sander LE, Sackett SD, Dierssen U, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function [J]. J Exp Med, 2010, 207(7): 1453-1464.
64
Chen J, Cai S, Li R, et al. Blockade of Cycloxygenase-2 ameliorates sepsis induced immune-suppression by regulating myeloid-derived suppressor cells [J]. Int Immunopharmacol, 2022, 104: 108506.
65
Xue Y, Xu Y, Liu X, et al. Correction to: ferumoxytol attenuates the function of MDSCs to ameliorate LPS-induced immunosuppression in sepsis [J]. Nanoscale Res Lett, 2022, 17(1): 3.
66
Liu T, Yang F, Xie J, et al. All-trans-retinoic acid restores CD4+ T cell response after sepsis by inhibiting the expansion and activation of myeloid-derived suppressor cells [J]. Mol Immunol, 2021, 136: 8-15.
67
Luo M, Wang H, Liu K, et al. IL-1R1 blockade attenuates liver injury through inhibiting the recruitment of myeloid-derived suppressor cells in sepsis [J]. Biochem Biophys Res Commun, 2022, 620: 21-28.
68
Chang S, Kim YH, Kim YJ, et al. Taurodeoxycholate increases the number of myeloid-derived suppressor cells that ameliorate sepsis in mice [J]. Front Immunol, 2018, 9: 1984.
69
McClure C, Brudecki L, Ferguson DA, et al. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis [J]. Infect Immun, 2014, 82(9): 3816-3825.
70
McClure C, Ali E, Youssef D, et al. NFI-A disrupts myeloid cell differentiation and maturation in septic mice [J]. J Leukoc Biol, 2016, 99(1): 201-211.
71
McPeak MB, Youssef D, Williams DA, et al. Myeloid cell-specific knockout of NFI-A improves sepsis survival [J]. Infect Immun, 2017, 85(4): e00066-117.
72
Alkhateeb T, Bah I, Kumbhare A, et al. Long non-coding RNA Hotairm1 promotes S100A9 support of MDSC expansion during sepsis [J]. J Clin Cell Immunol, 2020, 11(6): 600.
73
Namkoong H, Ishii M, Fujii H, et al. Clarithromycin expands CD11b+Gr-1+ cells via the STAT3/Bv8 axis to ameliorate lethal endotoxic shock and post-influenza bacterial pneumonia [J]. PLoS Pathog, 2018, 14(4): e1006955.
74
Derive M, Bouazza Y, Alauzet C, et al. Myeloid-derived suppressor cells control microbial sepsis [J]. Intensive Care Med, 2012, 38(6): 1040-1049.
75
Reizine F, Grégoire M, Lesouhaitier M, et al. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction [J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2115139119.
76
Wijnands KA, Castermans TM, Hommen MP, et al. Arginine and citrulline and the immune response in sepsis [J]. Nutrients, 2015, 7(3): 1426-1463.
77
Agarwal U, Didelija IC, Yuan Y, et al. Supplemental Citrulline is more efficient than Arginine in increasing systemic Arginine availability in mice [J]. J Nutr, 2017, 147(4): 596-602.
[1] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[2] 贾亚娟, 蒙钰铭, 高志伟, 高素敏, 张劲松, 孙虹. 血小板与淋巴细胞比值、降钙素原和白细胞介素6联合检测对脓毒症患者预后价值的研究[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 118-123.
[3] 冯芳, 陈宇, 杨静, 满珂, 蔡红燕, 李群. ω-3鱼油脂肪乳注射液在脓毒症患者中的应用:前瞻性、随机对照、先导试验[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 136-139.
[4] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[5] 浦凌宵, 诸俊浩, 陶亮, 王峰, 王萌, 管文贤. 低黏附性胃癌PET/CT影像学特征和脂代谢相关机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 255-260.
[6] 顾晓凌, 吴冠楠, 宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 324-328.
[7] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[8] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[9] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[10] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[11] 李莉, 张丽娜, 钱招昕. 亚甲蓝——脓毒症休克的“魔法锦囊”?[J]. 中华重症医学电子杂志, 2024, 10(02): 136-142.
[12] 张引, 李国强. 亚甲蓝治疗脓毒症休克的研究进展[J]. 中华重症医学电子杂志, 2024, 10(02): 143-147.
[13] 庞明敏, 闫美辰, 刘光凤, 宫继斌, 许娜娜, 郑玥, 范少华, 王昊. 脓毒症液体复苏治疗策略的研究进展[J]. 中华重症医学电子杂志, 2024, 10(02): 189-195.
[14] 杨磊, 汪美华, 胡锦. 急性脑梗死去骨瓣术后合并碳青霉烯耐药肺炎克雷伯菌感染一例[J]. 中华重症医学电子杂志, 2024, 10(02): 200-204.
[15] 苑乐添, 王艺霖, 沈子剑, 闫呈新. 血清GDF15、sB7-H1联合多层螺旋CT灌注成像技术对胃癌患者淋巴结转移的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 62-66.
阅读次数
全文


摘要