切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 265 -270. doi: 10.3877/cma.j.issn.2096-1537.2024.03.010

综述

细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展
胡梓菡1, 彭菲1, 孙骎1, 杨毅1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-06-29 出版日期:2024-08-28
  • 通信作者: 杨毅
  • 基金资助:
    国家自然科学基金项目(81971888,82202393,81901945); 科技部国家重点研发计划项目(2022YFC2504400); 江苏省重点研发计划项目(BE2022854); 江苏省"双创博士"人才计划项目(JSSCBO20220135)

Research progress of extracellular vesicles in vascular endothelial dysfunction in sepsis

Zihan Hu1, Fei Peng1, Qin Sun1, Yi Yang1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2023-06-29 Published:2024-08-28
  • Corresponding author: Yi Yang
引用本文:

胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.

Zihan Hu, Fei Peng, Qin Sun, Yi Yang. Research progress of extracellular vesicles in vascular endothelial dysfunction in sepsis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(03): 265-270.

脓毒症是感染时宿主反应失调导致的危及生命的器官功能障碍。血管内皮损伤是脓毒症的重要特征,抑制内皮损伤有助于改善脓毒症患者的器官功能和预后。细胞外囊泡(EV)作为细胞间通讯的重要载体,通过影响内皮屏障功能、黏附作用、凝血、血管生成、细胞死亡等过程在脓毒症血管内皮损伤中发挥了重要作用。本文对EV在脓毒症血管内皮损伤中的作用作一总结,以期进一步了解脓毒症的发病机制,并为脓毒症的治疗提供新的思路。

Sepsis is life-threatening organ dysfunction resulting from a dysregulated host response to infection. Vascular endothelial injury is an important feature of sepsis, and inhibiting endothelial injury can help to improve organ function and prognosis in patients with sepsis. As an important carrier of intercellular communication, extracellular vesicles play an important role in vascular endothelial injury in sepsis by affecting the endothelial barrier, leukocyte adhesion, coagulation, angiogenesis and cell death. This paper summarizes the role of extracellular vesicles in vascular endothelial injury in sepsis, in order to further understand the pathogenesis of sepsis and provide new ideas for sepsis treatment.

表1 EV对内皮的损伤和保护作用
图1 细胞外囊泡对脓毒症血管内皮的作用机制注:ATG7为自噬相关基因7;SERP1为应激相关内质网蛋白1;Src为SRC原癌基因,非受体酪氨酸激酶;VE-cadherin为VE-钙黏蛋白;IL-1β为白介素-1β;NF-κB为核因子κB;ICAM1为细胞间黏附分子1;TF为组织因子;Claudin5为紧密连接蛋白Claudin5;Alk为Alk受体酪氨酸激酶;CD为白细胞分化簇;siICAM1为小干扰细胞间黏附分子1;VCAM-1为血管黏附分子1;ROS为活性氧;SOD2为超氧化物歧化酶2;RPTOR为雷帕霉素蛋白激酶靶标;CREB为cAMP反应元件结合蛋白;ADSC为脂肪干细胞
1
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study [J]. Lancet, 2020, 395(10219): 200-211.
2
Xie J, Wang H, Kang Y, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey [J]. Crit Care Med, 2020, 48(3): e209-e218.
3
Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis [J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370.
4
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles [J]. Nat Rev Drug Discov, 2022, 21(5): 379-399.
5
van Niel G, Carter DRF, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles [J]. Nat Rev Mol Cell Biol, 2022, 23(5): 369-382.
6
Han L, Lam EWF, Sun Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales [J]. Mol Cancer, 2019, 18(1): 59.
7
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.
8
Zhang Y, Meng H, Ma R, et al. Circulating microparticles, blood cells, and endothelium induce procoagulant activity in sepsis through phosphatidylserine exposure [J]. Shock, 2016, 45(3): 299-307.
9
Mostefai HA, Meziani F, Mastronardi ML, et al. Circulating microparticles from patients with septic shock exert protective role in vascular function [J]. Am J Respir Crit Care Med, 2008, 178(11): 1148-1155.
10
Takei Y, Yamada M, Saito K, et al. Increase in circulating ACE-positive endothelial microparticles during acute lung injury [J]. Eur Respir J, 2019, 54(4): 1801188.
11
Chatterjee V, Yang X, Ma Y, et al. Endothelial microvesicles carrying Src-rich cargo impair adherens junction integrity and cytoskeleton homeostasis [J]. Cardiovasc Res, 2020, 116(8): 1525-1538.
12
Puhm F, Afonyushkin T, Resch U, et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type Ⅰ IFN and TNF responses in endothelial cells [J]. Circ Res, 2019, 125(1): 43-52.
13
Zafrani L, Gerotziafas G, Byrnes C, et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release [J]. Am J Respir Crit Care Med, 2012, 185(7): 744-755.
14
Gao K, Jin J, Huang C, et al. Exosomes derived from septic mouse serum modulate immune responses via exosome-associated cytokines [J]. Front Immunol, 2019, 10: 1560.
15
Li G, Wang B, Ding X, et al. Plasma extracellular vesicle delivery of miR-210-3p by targeting ATG7 to promote sepsis-induced acute lung injury by regulating autophagy and activating inflammation [J]. Exp Mol Med, 2021, 53(7): 1180-1191.
16
Gao M, Yu T, Liu D, et al. Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1 [J]. Clin Sci (Lond), 2021, 135(2): 347-365.
17
Wang JG, Williams JC, Davis BK, et al. Monocytic microparticles activate endothelial cells in an IL-1β-dependent manner [J]. Blood, 2011, 118(8): 2366-2374.
18
Woei-A-Jin FJSH, van der Starre WE, Tesselaar MET, et al. Procoagulant tissue factor activity on microparticles is associated with disease severity and bacteremia in febrile urinary tract infections [J]. Thromb Res, 2014, 133(5): 799-803.
19
Di L, Zha C, Liu Y. Platelet-derived microparticles stimulated by anti-β2GPI/β2GPI complexes induce pyroptosis of endothelial cells in antiphospholipid syndrome [J]. Platelets, 2023, 34(1): 2156492.
20
Liang W, Chen J, Zheng H, et al. MiR-199a-5p-containing macrophage-derived extracellular vesicles inhibit SMARCA4 and alleviate atherosclerosis by reducing endothelial cell pyroptosis [J]. Cell Biol Toxicol, 2022, 39(3): 591-605.
21
Mitra S, Exline M, Habyarimana F, et al. Microparticulate Caspase 1 regulates Gasdermin D and pulmonary vascular endothelial cell injury [J]. Am J Respir Cell Mol Biol, 2018, 59(1): 56-64.
22
Qin X, Zhou Y, Jia C, et al. Caspase-1-mediated extracellular vesicles derived from pyroptotic alveolar macrophages promote inflammation in acute lung injury [J]. Int J Biol Sci, 2022, 18(4): 1521-1538.
23
Essandoh K, Yang L, Wang X, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction [J]. Biochim Biophys Acta, 2015, 1852(11): 2362-2371.
24
Jiang L, Ni J, Shen G, et al. Upregulation of endothelial cell-derived exosomal microRNA-125b-5p protects from sepsis-induced acute lung injury by inhibiting topoisomerase Ⅱ alpha [J]. Inflamm Res, 2021, 70(2): 205-216.
25
Wei X, Yi X, Lv H, et al. MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy [J]. Cell Death Dis, 2020, 11(8): 657.
26
Li L, Huang L, Huang C, et al. The multiomics landscape of serum exosomes during the development of sepsis [J]. J Adv Res, 2022, 39: 203-223.
27
Zhou Y, Li P, Goodwin AJ, et al. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury [J]. Crit Care, 2019, 23(1): 44.
28
Das K, Keshava S, Pendurthi UR, et al. Factor Ⅶa suppresses inflammation and barrier disruption through the release of EEVs and transfer of microRNA 10a [J]. Blood, 2022, 139(1): 118-133.
29
Shah T, Qin S, Vashi M, et al. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome [J]. Clin Transl Med, 2018, 7(1): 19.
30
Dutra Silva J, Su Y, Calfee CS, et al. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS [J]. Eur Respir J, 2021, 58(1): 2002978.
31
Zhou Y, Li P, Goodwin AJ, et al. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis [J]. Mol Ther, 2018, 26(5): 1375-1384.
32
Ju Z, Ma J, Wang C, Yu J, et al. Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells [J]. Inflammation, 2017, 40(2): 486-496.
33
Delabranche X, Boisramé-Helms J, Asfar P, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy [J]. Intensive Care Med, 2013, 39(10): 1695-1703.
34
Bao W, Xing H, Cao S, et al. Neutrophils restrain sepsis associated coagulopathy via extracellular vesicles carrying superoxide dismutase 2 in a murine model of lipopolysaccharide induced sepsis [J]. Nat Commun, 2022, 13(1): 4583.
35
Wu SC, Kuo PJ, Rau CS, et al. Increased angiogenesis by exosomes secreted by adipose-derived stem cells upon lipopolysaccharide stimulation [J]. Int J Mol Sci, 2021, 22(16): 8877.
36
Almeria C, Weiss R, Roy M, et al. Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro [J]. Front Bioeng Biotechnol, 2019, 7: 292.
37
Soriano AO, Jy W, Chirinos JA, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis [J]. Crit Care Med, 2005, 33(11): 2540-2546.
38
Choi H, Kim Y, Mirzaaghasi A, et al. Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and mortality [J]. Sci Adv, 2020, 6(15): eaaz6980.
39
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV 2014 guidelines [J]. J Extracell Vesicles, 2018, 7(1): 1535750.
40
Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway [J]. Nat Rev Drug Discov, 2017, 16(9): 635-661.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[7] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[8] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[9] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[10] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[11] 刘娟丽, 马四清, 乌仁塔娜. 髓源性抑制细胞在脓毒症中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 271-278.
[12] 苏生林, 马金兰, 于弘明, 杨晓军. 单细胞测序技术在脓毒症免疫研究中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 279-286.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[15] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?