切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (04) : 344 -350. doi: 10.3877/cma.j.issn.2096-1537.2024.04.006

临床研究

HFOV 控制胸腹部肿瘤碳离子精准治疗患者呼吸运动的安全性分析
唐玉天1, 王艳芝1, 王毅1,(), 任益民2, 张雁山2, 赵文学1, 王芳1, 杨文源1   
  1. 1.733000 甘肃武威,甘肃省武威肿瘤医院重症医学科
    2.733000 甘肃武威,甘肃省武威肿瘤医院重离子中心
  • 收稿日期:2024-07-27 出版日期:2024-11-28
  • 通信作者: 王毅
  • 基金资助:
    甘肃省卫生健康行业科研计划项目(GSWSQN2023-20)

Safety analysis of high-frequency oscillatory ventilation to control respiratory movement in patients with thoracic and abdominal tumors treated with carbon ion precision therapy

Yutian Tang1, Yanzhi Wang1, Yi Wang1,(), Yimin Ren2, Yanshan Zhang2, Wenxue Zhao1, Fang Wang1, Wenyuan Yang1   

  1. 1.Department of Critical Care Medicine, Wuwei Cancer Hospital, Wuwei 733000, China
    2.Heavy Ion Center, Wuwei Cancer Hospital, Wuwei 733000, China
  • Received:2024-07-27 Published:2024-11-28
  • Corresponding author: Yi Wang
引用本文:

唐玉天, 王艳芝, 王毅, 任益民, 张雁山, 赵文学, 王芳, 杨文源. HFOV 控制胸腹部肿瘤碳离子精准治疗患者呼吸运动的安全性分析[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 344-350.

Yutian Tang, Yanzhi Wang, Yi Wang, Yimin Ren, Yanshan Zhang, Wenxue Zhao, Fang Wang, Wenyuan Yang. Safety analysis of high-frequency oscillatory ventilation to control respiratory movement in patients with thoracic and abdominal tumors treated with carbon ion precision therapy[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(04): 344-350.

目的

探讨高频振荡呼吸(HFOV)管控技术用于控制胸腹部肿瘤碳离子精准治疗患者呼吸运动的安全性。

方法

选取2023 年1 月至2024 年7 月在甘肃省武威肿瘤医院住院的33 例HFOV管控下碳离子治疗的胸腹部恶性肿瘤患者为研究组,统计分析患者治疗前、气管插管后、4D-CT 定位、靶区勾画30 min、4D-CT 复位间、碳离子治疗30 min、碳离子治疗60 min、碳离子治疗90 min、碳离子治疗120 min、复苏、拔管后的心率(HR)、平均动脉压(MAP)、血氧饱和度(SO2)、经皮氧分压(tcpO2)、经皮二氧化碳分压(tcpCO2),以及自主呼吸状态及HFOV 状态膈肌头脚方向最大运动度;选取同期非HFOV 下碳离子治疗的42 例胸腹部恶性肿瘤患者为对照组,统计2组患者碳离子治疗的摆位误差及临床靶区至计划靶区的外放距离(MPTV),以及不良反应及处理。

结果

研究组33 例患者中,肺、肝脏肿瘤多为多个病灶,最多者24 个病灶,所有多病灶患者均一次完成治疗。患者治疗前后及治疗中HR、MAP 无差异(P>0.05);而患者治疗前SO2、tcpO2 均低于其他阶段(P<0.001);复苏时及拔管后患者SO2 低于气管插管至碳离子治疗结束时水平,且高于治疗前(P<0.001);患者碳离子治疗90 min 和碳离子治疗120 min 时tcpO2、tcpCO2 均高于其他阶段(P<0.001),差异均有统计学意义。HFOV 时膈肌头脚方向最大运动度为1.30(0.80,2.00)mm,明显低于自主呼吸状态时的19.00(11.30,31.20)mm(P<0.001)。研究组患者碳离子治疗的摆位误差为X 轴1.13(0.16,2.02)mm、Y 轴1.57(0.12,5.26)mm、Z 轴1.21(0.10,6.19)mm,对照组为X 轴1.23(0.98,2.85)mm、Y 轴2.52(1.27,3.51)mm、Z 轴1.64(0.73,3.08)mm,研究组摆位误差低于对照组,差异均有统计学意义(P<0.001)。研究组患者MPTV 为X 轴1.13(0.70,1.47)mm、Y 轴1.57(0.89,2.41)mm、Z 轴1.21(0.74,1.61)mm,对照组患者MPTV 为X 轴1.22(1.15,1.29)mm、Y 轴2.51(2.04,2.66)mm、Z 轴1.63(1.49,1.75)mm,研究组MPTV 的Y 轴、Z 轴低于对照组,差异均有统计学意义(P<0.001);2组MPTV 的X 轴比较,差异无统计学意义(P>0.05)。1 例患者发生高血压,1 例患者发生CO2 潴留。拔管后2 例患者出现恶心、呕吐,33 例患者中9 例发生放射性肺炎,其中1 级7 例,2 级2 例。

结论

HFOV 管控技术用于控制胸腹部肿瘤患者呼吸运动是安全的,可降低患者碳离子治疗时的摆位误差、缩小MPTV,使患者得到高剂量、更精准、副作用小的碳离子治疗,提高疗效。

Objective

To investigate the safety of high-frequency oscillatory ventilation (HFOV)control technique for controlling respiratory movement in patients with thoracic and abdominal tumors with carbon ion precision therapy.

Methods

A total of 33 patients with thoracic and abdominal malignant tumors who were hospitalized in Wuwei Cancer Hospital of Gansu Province from January 2023 to July 2024 and treated with carbon ion under the control of HFOV were selected as the study group.Heart rate (HR), mean arterial pressure (MAP), oxygen saturation (SO2), transcutaneous oxygen pressure (tcpO2), transcutaneous carbon dioxide partial pressure (tcpCO2) before treatment, after endotracheal intubation, 4D-CT positioning, target delineation for 30 min, 4D-CT reduction, carbon ion therapy for 30 min, 60 min, 90 min, 120 min, resuscitation,after extubation, and the maximum motion degree of diaphragm in the direction of head and foot in the state of spontaneous breathing and HFOV were statistically analyzed.42 patients with thoracic and abdominal malignant tumors treated with carbon ion therapy without HFOV were selected as the control group, and the positioning error, margin of planning target volume (MPTV), and adverse reaction and treatment of the two groups were analyzed.

Results

Most lung and liver tumors had multiple lesions, with a maximum of 24 lesions is 33 cases of the study group.All patients with multiple lesions were treated at one time.There were no significant differences in HR, MAP before, during, or after treatment (P>0.05).SO2, tcpO2 were lower than those in other stages before treatment (P<0.001).SO2 was lower at resuscitation and after extubation than at the end of endotracheal intubation to carbon ion therapy, and higher than before treatment (P<0.001).tcpO2 and tcpCO2 were higher than those in other stages after 90 minutes and 120 minutes of carbon ion treatment (P<0.001).The maximum motion degree in the head and foot direction of the diaphragm in HFOV was 1.30 (0.80, 2.00) mm,which was significantly lower than that of 19.00 (11.30, 31.20) mm in the spontaneous breathing state (P<0.001).The positioning errors of carbon ion therapy in study group were 1.13 (0.16, 2.02) mm on X-axis, 1.57 (0.12,5.26) mm on Y-axis and 1.21 (0.10, 6.19) mm on Z-axis.In the control group, the X-axis was 1.23 (0.98,2.85) mm, Y-axis was 2.52 (1.27, 3.51) mm, Z-axis was 1.64 (0.73, 3.08) mm, there were significant differences between the two groups (P<0.001).The external boundary in the study group were 1.13 (0.70, 1.47) mm on the X-axis, 1.57 (0.89, 2.41) mm on the Y-axis, and 1.21 (0.74, 1.61) on the Z-axis mm, the external boundary of the control group was 1.22 (1.15, 1.29) mm on the X-axis, 2.51 (2.04, 2.66) mm on the Y-axis and 1.63 (1.49, 1.75)mm on the Z-axis, there were significant differences in the Y-axis and Z-axis of the external boundary between the two groups (P<0.001), while there was no statistically significant difference in the X-axis of the external boundary between the two groups (P>0.05).Hypertension occurred in 1 patient and CO2 retention occurred in 1 patient.After extubation, 2 patients developed nausea and vomiting, 9 of 33 patients developed radiation pneumonia, in which 7 cases of grade 1 and 2 cases of grade 2.

Conclusion

The HFOV control technique is safe for controlling the respiratory movement of patients with thoracic and abdominal tumors.It can reduce the positioning error of patients during carbon ion therapy, narrow MPTV, and enable patients to get high-dose, more accurate and less side effects of carbon ion therapy, and improve the curative effect.

图1 高频振荡呼吸管控下碳离子治疗流程 注:SO2 为血氧饱和度;tcpO2 为经皮氧分压;tcpCO2 为经皮二氧化碳分压;TOF 为4 个成串刺激;BIS 为脑电双频指数;MOAA/S 为改良警觉/镇静评分;RASS 为Richmond 躁动-镇静量表
表1 研究组患者一般临床资料统计(33 例)
编号 性别 年龄(岁) 诊断 治疗部位 照射病灶数(个) 治疗时长(h)
1 51 肝恶性肿瘤,肺继发恶性肿瘤 双肺 8 4.50
2 81 肺恶性肿瘤 双肺 23 10.50
3 54 肺恶性肿瘤 左肺 9 5.17
4 51 肝恶性肿瘤,肺继发恶性肿瘤 16 7.35
5 31 胰腺恶性肿瘤 胰腺 1 3.67
6 39 直肠恶性肿瘤,肺继发恶性肿瘤 右肺 8 4.17
7 50 胰腺恶性肿瘤 胰腺 1 3.50
8 59 胰腺恶性肿瘤 胰腺 1 3.20
9 65 胰腺恶性肿瘤 胰腺 1 3.33
10 67 肝内胆管癌 9 5.67
11 29 骨肉瘤,肺继发恶性肿瘤 双肺 13 8.00
12 54 肝恶性肿瘤 6 5.00
13 49 肝恶性肿瘤 5 4.67
14 51 肺恶性肿瘤 双肺 17 8.00
15 47 肝恶性肿瘤 9 6.50
16 44 肺恶性肿瘤 左肺 10 5.00
17 66 直肠恶性肿瘤,肺继发恶性肿瘤 双肺 14 8.83
18 50 肝恶性肿瘤 5 5.00
19 53 肺恶性肿瘤 左肺 9 7.50
20 68 肺恶性肿瘤 双肺 15 9.00
21 29 骨肉瘤,肺继发恶性肿瘤 双肺 18 10.17
22 51 肝恶性肿瘤,肺继发恶性肿瘤 右肺 11 8.50
23 51 肺恶性肿瘤 左肺 7 5.50
24 41 子宫恶性肿瘤,肺继发恶性肿瘤 右肺 9 7.00
25 39 直肠恶性肿瘤,肺继发恶性肿瘤 左肺 10 8.00
26 44 肺恶性肿瘤 左肺 12 8.50
27 59 肺恶性肿瘤 双肺 18 11.42
28 54 肾恶性肿瘤,肺继发恶性肿瘤 右肺 6 5.00
29 43 肺恶性肿瘤 双肺 16 11.00
30 54 肝恶性肿瘤,肺继发恶性肿瘤 双肺、肝 23 11.20
31 65 肝恶性肿瘤 9 6.00
32 69 肝恶性肿瘤,肺继发恶性肿瘤 双肺、肝 24 11.32
33 80 肝恶性肿瘤 7 5.50
图2 研究组患者肿瘤放射病灶数(33 例)
表2 研究组患者治疗期间监测指标统计(33 例,±s
表3 2组患者碳离子治疗的摆位误差比较[mm,MQ25Q75)]
表4 2组患者碳离子治疗的MPTV 比较[mm,MQ25Q75)]
1
Yang WC, Hsu FM, Yang PC.Precision radiotherapy for non-small cell lung cancer [J].J Biomed Sci, 2020, 27(1): 82.
2
孙晨楠, 毛海燕, 魏本飞, 等.4D-CT 联合呼吸门控技术应用于肺癌立体定向体部放疗的临床研究 [J].实用临床医药杂志, 2022,26(15): 15-18.
3
李万国, 朱芳芳, 祁英, 等.碳离子治疗系统放射治疗100 例恶性肿瘤患者摆位误差分析 [J].肿瘤学杂志, 2022, 28(8): 696-698.
4
潘鑫, 张一贺, 马彤, 等.国产碳离子系统治疗54 例肺癌临床分析 [J].中华放射肿瘤学杂志, 2024, 33(4): 319-325.
5
Zhang YS, Li XJ, Zhang YH, et al.Non-invasive high frequency oscillatory ventilation inhibiting respiratory motion in healthy volunteers [J].Sci Rep, 2022, 12(1): 22604.
6
Meyers M, Rodrigues N, Ari A.High frequency oscillatory ventilation:a narrative review [J].Can J Resp Ther, 2019, 55: 40-46.
7
Wang GY, Li ZB, Li GJ, et al.Real-time liver tracking algorithm based on LSTM and SVR networks for use in surface-guided radiation therapy [J].Radiat Oncol, 2021, 16(1): 13.
8
Vlachaki M, Castellon I, Leite C, et al.Impact of respiratory gating using 4-dimensional computed tomography on the dosimetry of tumor and normal tissues in patients with thoracic malignancies [J].Am J Clin Oncol, 2009, 32(3): 262-268.
9
Yeoh KW, McNair HA, McDonald F, et al.Cone beam CT verification for active breathing control (ABC)-gated radiotherapy for lung cancer[J].Acta Oncol, 2014, 53(5): 716-719.
10
Media M.A review of kidney motion under free, deep and forcedshallow breathing conditions: implications for stereotactic ablative body radiotherapy treatment [J].Technol Cancer Res Treat, 2014,13(4): 315-323.
11
Hu W, Xu A, Li G, et al.A real-time respiration position based passive breath gating equipment for gated radiotherapy: a preclinical evaluation [J].Med Phys, 2012, 39(3): 1345-1350.
12
Buzurovic I, Huang K, Yu Y, et al.A robotic approach to 4D real-time tumor tracking for radiotherapy [J].Phys Med Biol, 2011, 56(5): 1299-1318.
13
Liu YF, Jing W, Zhou JW, et al.Construction and verification of a radiation pneumonia prediction model based on multiple parameters [J].Cancer Control, 2021, 28(1): 7-30.
No related articles found!
阅读次数
全文


摘要