切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 doi: 10.3877/cma.j.issn.2096-1537.2024.07.23-0002

所属专题: 有“依”可靠-全国MDR诊疗实践项目——优秀病例展示

抗生素敏感性与临床决策的困境:多重耐药铜绿假单胞菌血流感染报告一例
李瑞1, 曲星伊2, 刘笑芬2, 陈龙1,()   
  1. 1. 200040 上海,复旦大学附属华山医院NICU
    2. 200040 上海,复旦大学附属华山医院抗生素研究所国家卫健委抗生素临床药理重点实验室 国家老年医学临床研究中心
  • 通信作者: 陈龙
  • 基金资助:
    国家自然科学基金项目(81901243,82173896,82171382); 国家重大科技专项项目(2017ZX09304005)

Navigating the challenges of antibiotic sensitivity and clinical decision-making: a case study on bloodstream infection caused by multidrug-resistant Pseudomonas aeruginosa

Rui Li1, Xingyi Qu2, Xiaofen Liu2, Long Chen1,()   

  1. 1. Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
    2. Fudan University and Key Laboratory of Clinical Pharmacology of Antibiotics and National Health Commission and National Clinical Research Center for Aging and Medicine, Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
  • Corresponding author: Long Chen
引用本文:

李瑞, 曲星伊, 刘笑芬, 陈龙. 抗生素敏感性与临床决策的困境:多重耐药铜绿假单胞菌血流感染报告一例[J]. 中华重症医学电子杂志, doi: 10.3877/cma.j.issn.2096-1537.2024.07.23-0002.

Rui Li, Xingyi Qu, Xiaofen Liu, Long Chen. Navigating the challenges of antibiotic sensitivity and clinical decision-making: a case study on bloodstream infection caused by multidrug-resistant Pseudomonas aeruginosa[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), doi: 10.3877/cma.j.issn.2096-1537.2024.07.23-0002.

目的

报告1例多重耐药铜绿假单胞菌(MDRPA)血流感染患者的治疗过程,探讨如何以药敏试验结果与治疗药物监测(TDM)指导抗生素药物选择和剂量。

方法

1例老年脑脓肿致MDRPA血流感染患者,在治疗过程中,经验性使用头孢他啶-阿维巴坦(CAZ-AVI)治疗感染。

结果

患者临床症状得到改善。但后续的细菌药敏试验表明该细菌对CAZ-AVI具有耐药性。考虑到临床治疗容错性低,治疗改为敏感的多黏菌素B 1 mg/kg维持剂量,TDM显示AUC 24 h, ss已达到65.5 mg · h/L。然而,治疗6 d后临床症状并未改善。面对这一复杂局面,在临床医师、药理学家、微生物学家的通力合作下,多黏菌素B剂量增加至1.4 mg/kg,AUC 24 h,ss为98.6 mg · h/L,最终治疗成功,病原菌被根除。

结论

基于临床疗效反馈,以药敏结果精准解读及TDM严密监测为前提的多学科诊疗模式(MDT)有助于科学规范的抗感染临床决策的制订,并能促进患者的康复进程。

Objective

To report the treatment process of a patient with multiple resistant Pseudomonas aeruginosa to guide antibiotic drug selection and dosage with antimicrobial susceptibility testing and precision therapeutic drug monitoring (TDM).

Methods

The treatment process of one elderly with multidrug-resistant Pseudomonas aeruginosa (MDRPA) bloodstream infection caused by a cerebral abscess was reported. During the treatment process, empirical therapy with ceftazidime-avibactam (CAZ-AVI) was initially used.

Results

The patient showed an improvement in her clinical symptoms. However, subsequent bacterial susceptibility testing revealed resistance to CAZ-AVI. Considering the low clinical tolerance for treatment modification, the therapy was switched to the sensitive agent polymyxin B at a maintenance dose of 1 mg/kg. TDM indicated an achieved AUC24 h, ss of 65.5 mg·h/L. However, after 6 days of treatment, there was no improvement in clinical symptoms. Faced with this complex situation, a collaborative effort among the clinical physician, pharmacologist, and microbiologist led to an increase in the polymyxin B dose to 1.4 mg/kg, resulting in an AUC24 h, ss of 98.6 mg·h/L. Ultimately, the treatment was successful, and the pathogen was eradicated.

Conclusion

Within the framework of scientific and regulated medication management, a collaborative multidisciplinary treatment (MDT) approach enhances the patient's rehabilitation process. The doctor's clinical expertise, guidance from TDM and pharmacokinetics/pharmacodynamics experts, and the antimicrobial susceptibility results provided by the clinical microbiology laboratory collectively inform the treatment direction.

表1 分离自血液样本的铜绿假单胞菌药物敏感试验
图1 患者WBC、CRP、PCT、体温、SCr和药物治疗的时间线。PMB TDM 1峰浓度:4.30 mg/L,谷浓度:1.48 mg/L,AUC 24 h,ss=65.5 mg · h/L;PMB TDM 2峰浓度:6.24 mg/L,谷浓度:2.49 mg/L,AUC 24 h,ss=98.6 mg · h/L注:TEMP为;WBC为白细胞;CRP为C反应蛋白;PCT为降钙素原;SCr为血肌酐;CAZ-AVI为头孢他啶-阿维巴坦;PMB为多黏菌素B;TDM为治疗药物监测
1
Alexiou VG, Michalopoulos A, Makris GC, et al. Multi-drug-resistant gram-negative bacterial infection in surgical patients hospitalized in the ICU: a cohort study [J]. Eur J Clin Microbiol Infect Dis, 2012, 31(4): 557-566.
2
Langford BJ, Daneman N, Diong C, et al. Antibiotic susceptibility reporting and association with antibiotic prescribing: a cohort study [J]. Clin Microbiol Infect, 2021, 27(4): 568-575.
3
中国药理学会治疗药物监测研究专业委员会,中国药学会医院药学专业委员会,中国药学会循证药学专业委员会,等.治疗药物监测结果解读专家共识[J].中国医院药学杂志, 2020, 40(23): 2389- 2395.
4
Tsuji BT, Pogue JM, Zavascki AP, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP) [J]. Pharmacotherapy, 2019, 39(1): 10-39.
5
Peña C, Suarez C, Gozalo M, et al. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections [J]. Antimicrob Agents Chemother, 2012, 56(3): 1265-1272.
6
Zhang Y, Li Y, Zeng J, et al. Risk factors for mortality of inpatients with Pseudomonas aeruginosa bacteremia in China: impact of resistance profile in the mortality [J]. Infect Drug Resist, 2020, 13: 4115-4123.
7
Thaden JT, Park LP, Maskarinec SA, et al. Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria [J]. Antimicrob Agents Chemother, 2017, 61(6): 279- 285.
8
Yu Z, Liu X, Du X, et al. Pharmacokinetics/pharmacodynamics of polymyxin B in patients with bloodstream infection caused by carbapenem-resistant Klebsiella pneumoniae [J]. Front Pharmacol, 2022, 13: 9750-9766.
9
刘亮,张觅,刘雅楠,等.多黏菌素B血药浓度监测研究进展[J].中国药师, 2021, 24(3): 536-541.
10
Liu X, Du J, Liu X, et al. Application of nursing intervention based on Nel noddings care theory for school-aged asthmatic children [J]. Am J Health Behav, 2023, 47(1): 130-138.
11
Huang X, Liu X, Wang Y, et al. Determination of polymyxin B in dried blood spots using LC-MS/MS for therapeutic drug monitoring [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1192: 123-131.
12
Zhang B, Li X, Chen Y, et al. Determination of polymyxin B in human plasma and epithelial lining fluid using LC-MS/MS and its clinical application in therapeutic drug monitoring [J]. J Pharm Biomed Anal, 2023, 227: 1152-1191.
13
Lakota EA, Landersdorfer CB, Nation RL, et al. Personalizing polymyxin B dosing using an adaptive feedback control algorithm [J]. Antimicrob Agents Chemother, 2018, 62(7): 22.
14
吴敏,范柳青,覃开羽.抗菌药物体内疗效与体外药敏试验不符的原因分析[J].抗感染药学, 2007, 4(3): 145-147.
15
Mouton JW, Muller AE, Canton R, et al. MIC-based dose adjustment: facts and fables [J]. J Antimicrob Chemother, 2018, 73(3): 564-568.
16
Tacconelli E, Mazzaferri F, De Smet AM, et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers [J]. Clin Microbiol Infect, 2019, 25(7): 807- 817.
17
Herrera S, Bodro M, Soriano A. Predictors of multidrug resistant Pseudomonas aeruginosa involvement in bloodstream infections [J]. Curr Opin Infect Dis, 2021, 34(6): 686-692.
18
Kim T, Lee SC, Bae M, et al. In vitro activities and inoculum effects of Ceftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales isolates from South Korea [J]. Antibiotics (Basel), 2020, 9(12): 381.
19
Stein GE, Smith CL, Scharmen A, et al. Pharmacokinetic and pharmacodynamic analysis of Ceftazidime/Avibactam in critically ill patients [J]. Surg Infect (Larchmt), 2019, 20(1): 55-61.
20
Zhu Y, Chen J, Shen H, et al. Emergence of Ceftazidime- and Avibactam-resistant Klebsiella pneumoniae Carbapenemase-producing Pseudomonas aeruginosa in China [J]. mSystems, 2021, 6(6): e00787-e00821.
21
Yang Q, Li Y, Fang L, et al. A novel KPC-113 variant conferring carbapenem and ceftazidime-avibactam resistance in a multidrug-resistant Pseudomonas aeruginosa isolate [J]. Clin Microbiol Infect, 2023, 29(3): 387.e7-.e14.
22
Rodríguez-Martínez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother, 2009, 53(5): 1766-1771.
23
Wu XL, Long WM, Lu Q, et al. Polymyxin B-associated nephrotoxicity and its predictors: a retrospective study in Carbapenem- Resistant Gram-Negative Bacterial infections [J]. Front Pharmacol, 2022, 13: 672543.
24
Yang J, Liu S, Lu J, et al. An area under the concentration-time curve threshold as a predictor of efficacy and nephrotoxicity for individualizing polymyxin B dosing in patients with carbapenem-resistant gram-negative bacteria [J]. Crit Care, 2022, 26(1): 320.
25
Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa [J]. Drug Discov Today, 2019, 24(1): 350- 359.
26
Kang CI, Kim SH, Kim HB, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome [J]. Clin Infect Dis, 2003, 37(6): 745-751.
27
Del Barrio-Tofino E, Zamorano L, Cortes-Lara S, et al. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology [J]. J Antimicrob Chemother, 2019, 74(7): 1825-1835.
28
Kang CI, Kim SH, Park WB, et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome [J]. Antimicrob Agents Chemother, 2005, 49(2): 760-766.
29
Micek ST, Welch EC, Khan J, et al. Resistance to empiric antimicrobial treatment predicts outcome in severe sepsis associated with Gram-negative bacteremia [J]. J Hosp Med, 2011, 6(7): 405-410.
30
陈云波,嵇金如,刘志盈,等.全国血流感染细菌耐药监测(BRICS) 2021年度报告[J].中华临床感染病杂志, 2023, 16(1): 33-47.
31
Chowers M, Gerassy-Vainberg S, Cohen-Poradosu R, et al. The effect of Macrolides on mortality in bacteremic Pneumococcal Pneumonia: a retrospective, nationwide cohort study, Israel, 2009-2017 [J]. Clin Infect Dis, 2022, 75(12): 2219-2224.
32
Timsit JF, Ruppe E, Barbier F, et al. Bloodstream infections in critically ill patients: an expert statement [J]. Intensive Care Med, 2020, 46(2): 266-284.
33
Corbella L, Boán J, San-Juan R, et al. Effectiveness of ceftazidime-avibactam for the treatment of infections due to Pseudomonas aeruginosa [J]. Int J Antimicrob Agents, 2022, 59(2): 106517.
34
Wang Y, Wang J, Wang R, et al. Resistance to ceftazidime-avibactam and underlying mechanisms [J]. J Glob Antimicrob Resist, 2020, 22: 18-27.
35
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? [J]. Expert Rev Anti Infect Ther, 2023, 21(4): 387-429.
36
Zavascki AP, Nation RL. Nephrotoxicity of Polymyxins: is there any difference between Colistimethate and Polymyxin B? [J]. Antimicrob Agents Chemother, 2017, 61(3): 472.
37
Doern GV, Brecher SM. The clinical predictive value (or lack thereof) of the results of in vitro antimicrobial susceptibility tests [J]. J Clin Microbiol, 2011, 49(9 Suppl): S11-S14.
38
Tängdén T, Ramos Martín V, Felton T W, et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections [J]. Intensive Care Med, 2017, 43(7): 1021-1032.
39
Gonçalves-Pereira J, Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams [J]. Crit Care, 2011, 15(5): R206.
40
Xie J, Roberts JA, Lipman J, et al. Pharmacokinetic/pharmacodynamic adequacy of polymyxin B against extensively drug-resistant Gram-negative bacteria in critically ill, general ward and cystic fibrosis patient populations [J]. Int J Antimicrob Agents, 2020, 55(6): 105943.
41
Gatti M, Cojutti PG, Bartoletti M, et al. Expert clinical pharmacological advice may make an antimicrobial TDM program for emerging candidates more clinically useful in tailoring therapy of critically ill patients [J]. Crit Care, 2022, 26(1): 178.
[1] 赵洪峰, 王淑颖, 胡炜, 聂世姣, 费莹, 石尚世, 储华英, 王剑荣. 体外膜肺氧合相关血流感染危险因素及预测模型建立[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 98-104.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 马珍珠, 窦懿, 张寅, 张勤, 吴蓓雯. 特重度烧伤合并吸入性损伤患者血流感染的临床特征及其主要风险因素分析[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 406-410.
[4] 吴红, 李凤, 席毛毛, 谢卫国. 烧伤患者中心静脉导管相关性血流感染的危险因素研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 333-339.
[5] 李悦, 马序竹, 陈旭岩, 丰雯诗, 王逸群. 187例单一屎肠球菌和粪肠球菌血流感染者临床特征及预后因素[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(06): 400-407.
[6] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[7] 武元星, 任建伟, 朱光发. 181例心脏外科患者发生血流感染危险因素分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 230-237.
[8] 李菲, 张大伟, 刘玉磊, 谢江, 朱光发. 产褥期血流感染者炎性指标及病原菌分布特征[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(04): 243-249.
[9] 刘法永, 胡萍, 戴丽. 获得性肺炎患者血流感染病原菌分布及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 666-669.
[10] 劳烨芳, 何芮, 朱芮, 张晓辉, 朱春荣. 多学科诊治不可切除结肠癌肝转移病例报道并文献复习[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 516-520.
[11] 刘霞, 赵双平. TDM指导特重度烧伤脓毒症患者多黏菌素B的个体化治疗一例[J]. 中华重症医学电子杂志, 2024, 10(01): 85-89.
[12] 黄匀, 明静, 龚晨晨, 钟剑敏, 刘旭, 付建宇, 毕红英, 方慧, 唐艳, 刘媛怡, 王迪芬. 重度骨髓抑制致导管源性空洞型重症金黄色葡萄球菌肺炎一例[J]. 中华重症医学电子杂志, 2021, 07(03): 282-284.
[13] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[14] 王晓苏, 戴铮, 朱嘉嘉, 李启超, 张李涛. BacT/ALERT两种血培养系统8种血培养瓶对模拟菌血症标本检测能力的对比研究[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 207-213.
[15] 胡晓蓉, 李小龙, 欧阳娟, 何思雨, 宋江勤. 不同吸附介质培养瓶的报阳时间及抗菌药物吸附性能的临床评估[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 84-89.
阅读次数
全文


摘要