切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 doi: 10.3877/cma.j.issn.2096-1537.2025.02.14.0003

述评

呼吸支持技术2024进展与展望
王金龙1, 邵敏1,()   
  1. 1.230000 合肥,安徽医科大学第一附属医院重症医学科
  • 收稿日期:2025-01-21
  • 通信作者: 邵敏

Advances and prospects of respiratory support technologies in 2024

Jinlong Wang1, Min Shao1,()   

  1. 1.Department of Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
  • Received:2025-01-21
  • Corresponding author: Min Shao
引用本文:

王金龙, 邵敏. 呼吸支持技术2024进展与展望[J/OL]. 中华重症医学电子杂志, doi: 10.3877/cma.j.issn.2096-1537.2025.02.14.0003.

Jinlong Wang, Min Shao. Advances and prospects of respiratory support technologies in 2024[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), doi: 10.3877/cma.j.issn.2096-1537.2025.02.14.0003.

呼吸支持技术是重症医学生命支持体系的关键组成部分。近年来,随着对呼吸病理生理认识的加深以及技术进步,呼吸支持技术以“在提供适度气体交换基础上,降低呼吸支持相关肺损伤”为核心发展方向。回顾2024年,呼吸支持技术在优化无创通气舒适度、无创通气失败早期预警、呼吸驱动监测、呼吸机相关性肺损伤的预防、呼气末正压滴定、清醒俯卧位、体外呼吸支持技术等领域取得了重要进步。未来,随着人工智能技术的发展,人工智能指导的个体化呼吸支持技术可能成为重要发展方向。

Respiratory support technology is a key component of the critical care life support system. In recent years, with a deeper understanding of respiratory pathophysiology and advancements in technology, the development of respiratory support technologies has focused on"providing adequate gas exchange while minimizing ventilator-associated lung injury". A review of 2024 highlights significant progress in areas such as optimizing non-invasive ventilation comfort,early warning of non-invasive ventilation failure, respiratory drive monitoring, prevention of ventilator-associated lung injury, positive end-expiratory pressure titration, awake prone positioning,and extracorporeal respiratory support technologies. In the future, with the development of artificial intelligence, AI-guided personalized respiratory support may become an important direction for further development.

[1]
Petkar S, Wanjari D, Priya V. A comprehensive review on high-flow nasal cannula oxygen therapy in critical care: evidence-based insights and future directions [J]. Cureus, 2024, 16(8):e66264.
[2]
Vieira F, Bezerra FS, Coudroy R, et al. High flow nasal cannula compared to continuous positive airway pressure: a bench and physiological study [J]. J Appl Physiol, 2022, 132:1580-1590.
[3]
Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure [J]. N Engl J Med, 2015, 372(23): 2185-2196.
[4]
Azoulay E, Lemiale V, Mokart D, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the high randomized clinical trial [J]. JAMA, 2018, 320(20): 2099-2107.
[5]
Schenck CS, Chouairi F, Dudzinski DM, et al. Noninvasive ventilation in the cardiac intensive care unit [J]. J Intensive Care Med, 2024. Online ahead of print.
[6]
Maia IS, Kawano-Dourado L, Tramujas L, et al. High-flow nasal oxygen vs noninvasive ventilation in patients with acute respiratory failure: the RENOVATE randomized clinical trial [J]. JAMA, 2024. Online ahead of print.
[7]
Rochwerg B, Einav S, Chaudhuri D, et al. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline [J]. Intensive Care Med,2020, 46(12): 2226-2237.
[8]
Chen D, Heunks L, Pan C, et al. A novel index to predict the failure of high-flow nasal cannula in patients with acute hypoxemic respiratory failure: a pilot study [J]. Am J Respir Crit Care Med, 2022, 206(7): 910-913.
[9]
Mosier JM, Tidswell M, Wang HE. Noninvasive respiratory support in the emergency department: controversies and state-of-the-art recommendations [J]. J Am Coll Emerg Physicians Open, 2024, 5(2): e13118.
[10]
Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines:noninvasive ventilation for acute respiratory failure [J]. Eur Respir J, 2017, 50(2): 1602426.
[11]
Ferrer M, Valencia M, Nicolas JM, et al. Early noninvasive ventilation averts extubation failure in patients at risk: a randomized trial [J]. Am J Respir Crit Care Med, 2006, 173(2):164-170.
[12]
Jaber S, Lescot T, Futier E, et al. Effect of noninvasive ventilation on tracheal reintubation among patients with hypoxemic respiratory failure following abdominal surgery: a randomized clinical trial [J]. JAMA, 2016, 315(13): 1345-1353.
[13]
Rittayamai N, Grieco DL, Brochard L. Noninvasive respiratory support in intensive care medicine [J]. Intensive Care Med, 2022, 48(9): 1211-1214.
[14]
Perkins GD, Ji C, Connolly BA, et al. Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: the RECOVERY-RS randomized clinical trial [J]. JAMA, 2022, 327(6): 546-558.
[15]
Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study [J]. Am J Respir Crit Care Med,2017, 195(1): 67-77.
[16]
Patel BK, Wolfe KS, Pohlman AS, et al. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial [J]. JAMA, 2016, 315(22): 2435-2441.
[17]
Arabi YM, Aldekhyl S, Al Qahtani S, et al. Effect of helmet noninvasive ventilation vs usual respiratory support on mortality among patients with acute hypoxemic respiratory failure due to COVID-19: the HELMET-COVID randomized clinical trial [J]. JAMA, 2022, 328(11):1063-1072.
[18]
Pitre T, Zeraatkar D, Kachkovski GV, et al. Noninvasive oxygenation strategies in adult patients with acute hypoxemic respiratory failure: a systematic review and network metaanalysis [J]. Chest, 2023, 164(4): 913-928.
[19]
Szafran JC, Patel BK. Invasive mechanical ventilation [J]. Crit Care Clin, 2024, 40(2): 255-273.
[20]
Wick KD, Ware LB, Matthay MA. Acute respiratory distress syndrome [J]. BMJ, 2024, 387:e076612.
[21]
Stapleton RD, Suratt BT, Neff MJ, et al. Bronchoalveolar fluid and plasma inflammatory biomarkers in contemporary ARDS patients [J]. Biomarkers, 2019, 24(4): 352-359.
[22]
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome [J]. N Engl J Med, 2015, 372(8): 747-755.
[23]
Grasselli G, Calfee CS, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies [J]. Intensive Care Med,2023, 49(7): 727-759.
[24]
Goligher EC, Telias I, Sahetya SK, et al. Physiology is vital to precision medicine in acute respiratory distress syndrome and sepsis [J]. Am J Respir Crit Care Med, 2022, 206(1): 14-16.
[25]
Albert RK. Constant Vt ventilation and surfactant dysfunction: an overlooked cause of ventilator-induced lung injury [J]. Am J Respir Crit Care Med, 2022, 205(2): 152-160.
[26]
Tonetti T, Vasques F, Rapetti F, et al. Driving pressure and mechanical power: new targets for VILI prevention [J]. Ann Transl Med, 2017, 5(14): 286.
[27]
Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilatorinduced lung injury [J]. Anesthesiology, 2016, 124(5): 1100-1108.
[28]
Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts [J]. Intensive Care Med, 2018, 44(11): 1914-1922.
[29]
Zhang Z, Zheng B, Liu N, et al. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome [J]. Intensive Care Med, 2019, 45(6): 856-864.
[30]
Consalvo S, Accoce M, Telias I. Monitoring and modulating respiratory drive in mechanically ventilated patients [J]. Curr Opin Crit Care, 2025, 31(1): 30-37.
[31]
Baedorf-Kassis E, Murn M, Dzierba AL, et al. Respiratory drive heterogeneity associated with systemic inflammation and vascular permeability in acute respiratory distress syndrome[J]. Crit Care, 2024, 28(1): 136.
[32]
Georgopoulos D, Bolaki M, Stamatopoulou V, et al. Respiratory drive: a journey from health to disease [J]. J Intensive Care, 2024, 12(1): 15.
[33]
Telias I, Damiani F, Brochard L. The airway occlusion pressure [P(0.1)] to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem [J]. Intensive Care Med, 2018, 44(9): 1532-1535.
[34]
de Vries HJ, Tuinman PR, Jonkman AH, et al. Performance of noninvasive airway occlusion maneuvers to assess lung stress and diaphragm effort in mechanically ventilated critically ill patients [J]. Anesthesiology, 2023, 138(3): 274-288.
[35]
Holle RH, Schoene RB, Pavlin EJ. Effect of respiratory muscle weakness on P0.1 induced by partial curarization [J]. J Appl Physiol Respir Environ Exerc Physiol, 1984, 57(4): 1150-1157.
[36]
Telias I, Junhasavasdikul D, Rittayamai N, et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation [J]. Am J Respir Crit Care Med, 2020, 201(9): 1086-1098.
[37]
Wong IMJ, Ferguson ND, Urner M. Invasive mechanical ventilation [J]. Intensive Care Med,2023, 49(6): 669-672.
[38]
Mauri T, Grieco DL, Spinelli E, et al. Personalized positive end-expiratory pressure in spontaneously breathing patients with acute respiratory distress syndrome by simultaneous electrical impedance tomography and transpulmonary pressure monitoring: a randomized crossover trial [J]. Intensive Care Med, 2024, 50(12): 2125-2137.
[39]
Yuan X, Chen D, Chao Y, et al. Effect of individualized PEEP titrated by EIT in patients with acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2025. Online ahead of print.
[40]
Sato R, Dugar S, Cheungpasitporn W, et al. The impact of right ventricular injury on the mortality in patients with acute respiratory distress syndrome: a systematic review and metaanalysis [J]. Crit Care, 2021, 25(1): 172.
[41]
Rubulotta F, Blanch Torra L, Naidoo KD, et al. Mechanical ventilation, past, present, and future [J]. Anesth Analg, 2024, 138(2): 308-325.
[42]
Mandyam S, Qureshi M, Katamreddy Y, et al. Neurally adjusted ventilatory assist versus pressure support ventilation: a comprehensive review [J]. J Intensive Care Med, 2024, 39(12):1194-1203.
[43]
Coiffard B, Dianti J, Telias I, et al. Dyssynchronous diaphragm contractions impair diaphragm function in mechanically ventilated patients [J]. Crit Care, 2024, 28(1): 107.
[44]
Wu M, Yuan X, Liu L, et al. Neurally adjusted ventilatory assist vs. conventional mechanical ventilation in adults and children with acute respiratory failure: a systematic review and metaanalysis [J]. Front Med, 2022, 9: 814245.
[45]
Bryan AC. Conference on the scientific basis of respiratory therapy. Pulmonary physiotherapy in the pediatric age group. Comments of a devil's advocate [J]. Am Rev Respir Dis, 1974,110(6): 143-144.
[46]
Liu L, Xie J, Wang C, et al. Prone position improves lung ventilation-perfusion matching in non-intubated COVID-19 patients: a prospective physiologic study [J]. Crit Care, 2022, 26(1):193.
[47]
Rampon GL, Simpson SQ, Agrawal R. Prone positioning for acute hypoxemic respiratory failure and ARDS: a review [J]. Chest, 2023, 163(2): 332-340.
[48]
Jochmans S, Mazerand S, Chelly J, et al. Duration of prone position sessions: a prospective cohort study [J]. Ann Intensive Care, 2020, 10(1): 66.
[49]
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome [J]. N Engl J Med, 2013, 368(23): 2159-2168.
[50]
Sud S, Fan E, Adhikari NKJ, et al. Comparison of venovenous extracorporeal membrane oxygenation, prone position and supine mechanical ventilation for severely hypoxemic acute respiratory distress syndrome: a network meta-analysis [J]. Intensive Care Med, 2024, 50(7):1021-1034.
[51]
Li J, Luo J, Pavlov I, et al. Awake prone positioning for non-intubated patients with COVID-19-related acute hypoxaemic respiratory failure: a systematic review and meta-analysis [J].Lancet Respir Med, 2022, 10(6): 573-583.
[52]
Qin S, Chang W, Peng F, et al. Awake prone position in COVID-19-related acute respiratory failure: a meta-analysis of randomized controlled trials [J]. BMC Pulm Med, 2023, 23(1): 145.
[53]
Weatherald J, Parhar KKS, Al Duhailib Z, et al. Efficacy of awake prone positioning in patients with covid-19 related hypoxemic respiratory failure: systematic review and metaanalysis of randomized trials [J]. BMJ, 2022, 379: e071966.
[54]
Liu L, Sun Q, Zhao H, et al. Prolonged vs shorter awake prone positioning for COVID-19 patients with acute respiratory failure: a multicenter, randomised controlled trial [J]. Intensive Care Med, 2024, 50(8): 1298-1309.
[55]
Greendyk R, Abrams D, Agerstrand C, et al. Extracorporeal support for acute respiratory distress syndrome [J]. Clin Chest Med, 2024, 45(4): 905-916.
[56]
De Backer D, Donker DW, Combes A, et al. Mechanical circulatory support in cardiogenic shock: microaxial flow pumps for all and VA-ECMO consigned to the museum? [J]. Crit Care, 2024, 28(1): 203.
[57]
Slutsky AS, Ranieri VM. Ventilator-induced lung injury [J]. N Engl J Med, 2013, 369(22):2126-2136.
[58]
Nin N, Muriel A, Peñuelas O, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome [J]. Intensive Care Med, 2017, 43(2): 200-208.
[59]
Costa ELV, Slutsky AS, Brochard LJ, et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2021,204(3): 303-311.
[60]
Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [J]. N Engl J Med, 2018, 378(21): 1965-1975.
[61]
Combes A, Peek GJ, Hajage D, et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis [J]. Intensive Care Med, 2020, 46(11): 2048-2057.
[62]
Fernando SM, Brodie D, Barbaro RP, et al. Age and associated outcomes among patients receiving venovenous extracorporeal membrane oxygenation for acute respiratory failure:analysis of the Extracorporeal Life Support Organization registry [J]. Intensive Care Med,2024, 50(3): 395-405.
[63]
Schmidt M, Zogheib E, Rozé H, et al. The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [J]. Intensive Care Med, 2013, 39(10): 1704-1713.
[64]
Schmidt M, Bailey M, Sheldrake J, et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score [J]. Am J Respir Crit Care Med, 2014,189(11): 1374-1382.
[65]
Turgeon J, Venkatamaran V, Englesakis M, et al. Long-term outcomes of patients supported with extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis [J]. Intensive Care Med, 2024, 50(3): 350-370.
[66]
Combes A, Brodie D, Aissaoui N, et al. Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions [J]. Intensive Care Med, 2022, 48(10): 1308-1321.
[67]
McNamee JJ, Gillies MA, Barrett NA, et al. Effect of lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal vs standard care ventilation on 90-day mortality in patients with acute hypoxemic respiratory failure: the REST randomized clinical trial [J]. JAMA, 2021, 326(11): 1013-1023.
[68]
Duggal A, Conrad SA, Barrett NA, et al. Extracorporeal carbon dioxide removal to avoid invasive ventilation during exacerbations of chronic obstructive pulmonary disease: VENTAVOID trial - a randomized clinical trial [J]. Am J Respir Crit Care Med, 2024, 209(5): 529-542.
[69]
Piquilloud L. Extracorporeal carbon dioxide removal in chronic obstructive pulmonary disease: it depends on the objective! [J]. Am J Respir Crit Care Med, 2024, 209(5): 472-473.
[70]
Tiruvoipati R, Kaul S, Gupta S, et al. VENT-AVOID trial: avoiding acute hypercapnic respiratory failure! [J]. Am J Respir Crit Care Med, 2024, 209(12): 1513-1514.
[71]
Choudhary T, Upadhyaya P, Davis CM, et al. Derivation and validation of generalized sepsisinduced acute respiratory failure phenotypes among critically ill patients: a retrospective study[J]. Crit Care, 2024, 28(1): 321.
[72]
Misseri G, Piattoli M, Cuttone G, et al. Artificial intelligence for mechanical ventilation: a transformative shift in critical care [J]. Ther Adv Pulm Crit Care Med, 2024, 19:29768675241298918.
[73]
Rubulotta F, Bahrami S, Marshall DC, et al. Machine learning tools for acute respiratory distress syndrome detection and prediction [J]. Crit Care Med, 2024, 52(11): 1768-1780.
[74]
Peine A, Hallawa A, Bickenbach J, et al. Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care [J]. NPJ Digit Med, 2021, 4(1): 32.
[75]
Liu S, Xu Q, Xu Z, et al. Reinforcement learning to optimize ventilator settings for patients on invasive mechanical ventilation: retrospective study [J]. J Med Internet Res, 2024, 26:e44494.
[76]
Sottile PD, Albers D, Higgins C, et al. The association between ventilator dyssynchrony,delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm [J]. Crit Care Med, 2018, 46(2): e151-e157.
[77]
Gholami B, Phan TS, Haddad WM, et al. Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning [J]. Comput Biol Med, 2018, 97: 137-144.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 陈丽, 郭俊氚, 马红梅, 刘遵季. 死腔分数对急性呼吸窘迫综合征预后预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 942-947.
[6] 袁丽, 钱际银, 张云, 张晶, 高霏. 急性呼吸窘迫综合征患者体外膜氧合救治的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1013-1016.
[7] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[8] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[9] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[10] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[11] 刘婷, 杨少康, 陈亿霏, 刘悦, 潘纯. 气道闭合的监测在机械通气中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 394-398.
[12] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[13] 姚庆春, 魏光晨, 孟玫. 关注ICU 患者接受的非必要血液检测[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 329-333.
[14] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[15] 刘建, 王文珠, 王倩. 老年髋部骨折术后肺损伤现状调查分析及影响因素研究[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 260-264.
阅读次数
全文


摘要