切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 221 -225. doi: 10.3877/cma.j.issn.2096-1537.2025.03.002

述评

大语言模型在重症医学领域的应用与展望
代巍巍(), 沈伟, 刘彦, 周黎明   
  1. 518000 深圳,深圳迈瑞生物医疗电子股份有限公司
  • 收稿日期:2025-03-10 出版日期:2025-08-28
  • 通信作者: 代巍巍

Large language models in critical care medicine: current applications and future directions

Weiwei Dai(), Wei Shen, Yan Liu, Liming Zhou   

  1. Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen 518000, China
  • Received:2025-03-10 Published:2025-08-28
  • Corresponding author: Weiwei Dai
引用本文:

代巍巍, 沈伟, 刘彦, 周黎明. 大语言模型在重症医学领域的应用与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(03): 221-225.

Weiwei Dai, Wei Shen, Yan Liu, Liming Zhou. Large language models in critical care medicine: current applications and future directions[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2025, 11(03): 221-225.

近年来,大语言模型(LLMs)技术的突破为重症医学这一强调多学科协作、实时监测和及时干预的学科提供了新的技术范式。通过整合多模态数据、实时综合分析,LLMs在病情监测、辅助诊疗与临床效率提升中展现出独特潜力。然而,重症医学对个体化诊疗思维、患者动态数据解析及循证的严苛要求,对通用模型的专科能力提出了重大挑战。本文结合技术探索和临床实践,系统探讨LLM在重症医学中的应用路径,并从融入核心诊疗场景、技术迭代、标准化建设以及医工协同四个方面提出未来发展展望。

Large language models (LLMs) are emerging as a transformative tool in critical care medicine, a discipline that fundamentally relies on multidisciplinary collaboration, real-time monitoring, and timely intervention. With their capability to integrate and synthesize multi-modal data (e.g., clinical notes, physiological signals), LLMs demonstrate significant potential to enhance condition monitoring, provide clinical decision support, and improve overall workflow efficiency. However, the rigorous demands of critical care -including the needs for individualized clinical reasoning, accurate interpretation of dynamic high-stakes patient data, and strict adherence to evidence - based practice-present substantial challenges for the direct application of general - purpose LLMs. This review systematically explores the potential application pathways for LLMs in critical care medicine by integrating insights from technical explorations and clinical practice. Furthermore, we propose a future roadmap focusing on four key areas: deep integration into core clinical workflows, continuous technological refinement, establishment of robust standards and validation frameworks, and fostering effective collaboration between clinicians and engineers.

图1 重症后训练语料库建设
图2 后训练建立重症思维
图3 整合患者诊疗全流程的高保真数据 注:HIS为医院信息系统;LIS为实验室信息系统;PACS为影像存储传输系统
图4 增强检索技术定位关键查询数据 注:TEXT为口语化的文本;SQL为结构化查询语言;LIS为实验室信息系统;EMR为电子病历系统;PACS为影像存储传输系统;HIS为医院信息系统;PUMP为输液泵;ECMO为体外膜肺氧合装置;PM为监护仪;VM为呼吸机;CRRT为连续性血液净化设备
1
Sagy I, Fuchs L, Mizrakli Y, et al. Characteristics and outcomes of critically-ill medical patients admitted to a tertiary medical center with restricted ICU bed capacity [J]. J Crit Care, 2018, 43: 281-287.
2
Du B, An Y, Kang Y, et al; China Critical Care Clinical Trial Group. Characteristics of critically ill patients in ICUs in mainland China [J]. Crit Care Med, 2013, 41(1): 84-92.
3
周翔. 如何培养重症医学临床思维能力 [J]. 中华医学杂志, 2019, 99(25): 1934-1937.
4
Thirunavukarasu AJ, Ting DSJ, Elangovan K, et al. Large language models in medicine [J]. Nat Med, 2023, 29(8): 1930-1940.
5
Jiang LY, Liu XC, Nejatian NP, et al. Health system-scale language models are all-purpose prediction engines [J]. Nature, 2023, 619(7969): 357-362.
6
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [EB/OL]. (2017-06-12) [2023-08-02].
7
Liu X, Liu H, Yang G, et al. A generalist medical language model for disease diagnosis assistance [J]. Nat Med, 2025, 31(3): 932-942.
8
Hartman V, Zhang X, Poddar R, et al. Developing and evaluating large language model-generated emergency medicine handoff notes [J]. JAMA Netw Open, 2024,7(12): e2448723.
9
He Z, Bhasuran B, Jin Q, et al. Quality of answers of generative large language models versus peer users for interpreting laboratory test results for lay patients: evaluation study [J]. J Med Internet Res, 2024, 26: e56655.
10
Abdel Malek M, van Velzen M, Dahan A, et al. Generation of preoperative anaesthetic plans by ChatGPT-4.0: a mixed-method study [J]. Br J Anaesth, 2025, 134(5): 1333-1340.
11
Chung P, Fong CT, Walters AM, et al. Large language model capabilities in perioperative risk prediction and prognostication [J]. JAMA Surg, 2024, 159(8): 928-937.
12
Muennighoff N, Yang Z, Shi W, et al. Simple test-time scaling [EB/OL]. (2025-01-31) [2025-03-01].
13
Ye Y, Huang Z, Xiao Y, et al. Less is more for reasoning [EB/OL]. (2025-02-05) [2025-03-10].
14
Fabbri AR, Kryściński W, McCann B, et al. SummEval: re-evaluating summarization evaluation [EB/OL]. (2021-02-01) [2025-03-01].
15
Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge [J]. Nature, 2023, 620(7972): 172-180.
16
叶文宇, 张光磊, 洪俊标, 等. 一种基于多导同步心电信号处理方法及装置: 中国, 200710305062 [P]. 2025-04-28.
17
陈孝平, 张英泽, 兰平. 外科学 [M]. 10版. 北京: 人民卫生出版社, 2024.
18
Bhargava A, López-Espina C, Schmalz L, et al. FDA-authorized AI/ML tool for sepsis prediction: development and validation [J]. NEJM AI, 2024, 1(12).
[1] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[2] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[3] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[4] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[5] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[6] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[7] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[8] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[9] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[10] 嵇振岭. 疝与腹壁外科补片研发国外进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 614-622.
[11] 刘宝德, 郑娉娉, 肖宇翔, 沈凌, 王柳盛, 张维. 肺泡灌洗液中炎症因子对重症肺炎患者痰栓风险的预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 917-922.
[12] 谢钰嵘, 唐流康, 陈明政, 王伟利, 缪文学, 谢峰. 人工智能在肝胆外科临床教学中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 822-827.
[13] 薛怡宁, 兰雅迪, 刘兆宇, 史磊, 赵琪, 许洪伟. 基于图像的人工智能在胃癌中的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 670-675.
[14] 江学良. 人工智能在炎症性肠病诊疗中的研究进展与应用展望[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 680-680.
[15] 常芳媛, 乔春梅, 王欣, 王博冉, 赵梓孚, 李春歌, 王晓磊. 多模态超声及人工智能在细菌性和非细菌性关节炎中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 606-611.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?