切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 226 -232. doi: 10.3877/cma.j.issn.2096-1537.2025.03.003

述评

新型冠状病毒感染大流行期间侵袭性肺真菌病的变迁与挑战
周子靖1, 谢剑锋1, 薛明1,2,()   
  1. 1 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
    2 830000 乌鲁木齐,新疆医科大学第五附属医院重症医学科
  • 收稿日期:2024-09-02 出版日期:2025-08-28
  • 通信作者: 薛明
  • 基金资助:
    国家自然科学基金项目(82102303); 江苏省基础研究计划(自然科学基金)青年基金项目(BK20210231)

Invasive pulmonary fungal disease during the COVID-19 pandemic: evolution and challenges

Zijing Zhou1, Jianfeng Xie1, Ming Xue1,2,()   

  1. 1 Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
    2 Department of Critical Care Medicine, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
  • Received:2024-09-02 Published:2025-08-28
  • Corresponding author: Ming Xue
引用本文:

周子靖, 谢剑锋, 薛明. 新型冠状病毒感染大流行期间侵袭性肺真菌病的变迁与挑战[J/OL]. 中华重症医学电子杂志, 2025, 11(03): 226-232.

Zijing Zhou, Jianfeng Xie, Ming Xue. Invasive pulmonary fungal disease during the COVID-19 pandemic: evolution and challenges[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2025, 11(03): 226-232.

新型冠状病毒感染(简称新冠感染)大流行期间侵袭性肺真菌病(IPFD)流行病学发生变化,表现为易感人群扩大,发病率、病死率明显上升。新冠感染是IPFD流行病学变迁的重要原因,新型冠状病毒及相关治疗通过破坏正常免疫反应增加肺部真菌感染风险。早期识别IPFD易感因素和规范临床实践有助于推进IPFD诊疗的关口前移。本文就新冠感染大流行期间IPFD流行病研究进行系统综述,对其流行病变迁及临床诊疗面临的挑战进行梳理。

The epidemiology of invasive pulmonary fungal disease (IPFD) has evolved during the coronavirus disease 2019 (COVID-19) pandemic, characterized by the expanded susceptible population and significant increase in incidence and mortality. COVID-19 is a key driver of this epidemiological shift, as the SARS-CoV-2 virus and its associated treatments can compromise normal immune defenses, thereby elevating the risk of pulmonary fungal infection. Early recognition of risk factors for IPFD and standardization of clinical practices are crucial for improving the timeliness of diagnosis and intervention. This article presents a systematic review of the research on IPFD during the COVID-19 pandemic, aiming to elucidate the evolving epidemiology and discuss the challenges in clinical diagnosis and treatment.

表1 不同IPA共识的宿主因素
年份 来源 共识名称 定义 宿主因素
2018年 荷兰/比利时MSG 改良AspICU诊断标准[51] IPA 无宿主因素
2019年 EORTC-IDG及MSGERC 2019年EORTC/MSGERC侵袭性真菌病共识定义[54] IPA 近期中性粒细胞减少(中性粒细胞<0.5×109/L[中性粒细胞<500个/mm3],持续10 d以上),与侵袭性真菌病发病时间有相关性;血液系统恶性疾病;接受同种异体造血干细胞移植;接受实体器官移植;在过去60 d内,以≥0.3 mg/kg治疗剂量长时间使用糖皮质激素类药物≥3周(不包括过敏性支气管肺曲霉菌病患者);在过去90 d内使用其他公认的T细胞免疫抑制剂,如钙调磷酸酶抑制剂、肿瘤坏死因子α阻滞剂、淋巴细胞特异性单克隆抗体、免疫抑制核苷类似物进行治疗;使用公认的B细胞免疫抑制剂治疗,例如布鲁顿氏酪氨酸激酶抑制剂,如伊布替尼;遗传性严重免疫缺陷病(例如慢性肉芽肿病,STAT3缺陷,或严重的联合免疫缺陷);累及肠道、肺部或肝脏的Ⅲ级或Ⅳ级急性移植物抗宿主病,对糖皮质激素类一线药物治疗无效
2020年 ECMM及ISHAM 2020 ECMM/ISHAM研究和临床指南共识标准[52] CAPA 在入院至入住ICU期间2周内任意时间进行新型冠状病毒RT-PCR阳性;入住ICU后72~96 h内新型冠状病毒RT-PCR阳性
2021年 EORTC-IDG及真MSGERC的ICU工作组 EORTC/MSGERC指南侵袭性真菌病定义:ICU工作组工作总结[13] IPA 使用糖皮质激素治疗,剂量相当于泼尼松20 mg/d或更多;定性或定量的中性粒细胞异常(遗传性中性粒细胞缺乏,中性粒细胞计数<500个/mm3);慢性呼吸道异常(慢性阻塞性肺疾病、支气管扩张);肝硬化失代偿期;在过去90 d内使用公认的免疫抑制剂(如钙调磷酸酶或哺乳动物西罗莫司靶蛋白抑制剂、肿瘤坏死因子阻断剂和类似的抗真菌免疫途径、阿仑单抗、伊布替尼、核苷类似物)治疗;血液恶性肿瘤/造血;干细胞移植;实体器官移植;人类免疫缺陷病毒感染;严重流感(或其他严重的病毒性肺炎,如COVID-19)
2024年 FUNDICU协作组 ICU成年患者侵袭性真菌病(FUNDICU)共识定义*[53] IPA 流感;COVID-19;中度/重度慢性阻塞性肺病;失代偿期肝硬化;不受控制的人类免疫缺陷病毒感染,CD4细胞计数<200/mm3;实体瘤
1
Lass-Flörl C, Steixner S. The changing epidemiology of fungal infections [J]. Mol Aspects Med, 2023, 94: 101215.
2
Vallabhaneni S, Benedict K, Derado G, et al. Trends in hospitalizations related to invasive aspergillosis and mucormycosis in the United States, 2000-2013 [J]. Open Forum Infect Dis, 2017, 4(1): ofw268.
3
Li ZT, Li YM, Chen YJ, et al. Trends of pulmonary fungal infections from 2013 to 2019: an AI-based real-world observational study in Guangzhou, China [J]. Emerg Microbes Infect, 2021, 10(1): 450-460.
4
Vincent JL, Sakr Y, Singer M, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017 [J]. JAMA, 2020, 323(15): 1478-1487.
5
Denning DW. Global incidence and mortality of severe fungal disease [J]. Lancet Infect Dis, 2024, 24(7): e428-e438.
6
Kang JS. Changing trends in the incidence and clinical features of pneumonia in non-HIV patients before and during the COVID-19 era and risk factors for mortality between 2016 and 2022 [J]. Life (Basel), 2023, 13(6): 1335.
7
Patel A, Agarwal R, Rudramurthy SM, et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India [J]. Emerg Infect Dis, 2021, 27(9): 2349-2359.
8
Brown GD, Denning DW, Gow NA, et al. Hidden kllers: human fungal infections [J]. Sci Transl Med, 2012, 4(165): 165rv13.
9
Mansoor S, Ahmed TI, Happa K, et al. Spectrum of mucormycosis before and during COVID-19: epidemiology, diagnosis, and current therapeutic interventions [J]. Curr Fungal Infect Rep, 2022, 16(4): 131-142.
10
Lin CY, Liu WL, Chang CC, et al. Invasive fungal tracheobronchitis in mechanically ventilated critically ill patients: underlying conditions, diagnosis, and outcomes [J]. Ann Intensive Care, 2017, 7(1): 9.
11
Zhu XJ, Ge YY, Wu T, et al. Co-infection with respiratory pathogens among COVID-2019 cases [J]. Virus Res, 2020, 285: 198005.
12
Prattes J, Wauters J, Giacobbe DR, et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—a multinational observational study by the European Confederation of Medical Mycology [J]. Clin Microbiol Infect, 2022, 28(4): 580-587.
13
Bassetti M, Azoulay E, Kullberg B-J, et al. EORTC/MSGERC definitions of invasive fungal diseases: summary of activities of the intensive care unit working group [J]. Clin Infect Dis, 2021, 72(Suppl 2): S121-S127.
14
Muthu V, Agarwal R, Patel A, et al. Definition, diagnosis, and management of COVID-19-associated pulmonary mucormycosis: Delphi consensus statement from the Fungal Infection Study Forum and Academy of Pulmonary Sciences, India [J]. Lancet Infect Dis, 2022, 22(9): e240-e253.
15
Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J]. Lancet, 2020, 395(10223): 507-513.
16
Gangneux JP, Dannaoui E, Fekkar A, et al. Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study [J]. Lancet Respir Med, 2022, 10(2): 180-190.
17
Permpalung N, Chiang TP-Y, Massie AB, et al. Coronavirus disease 2019-associated pulmonary aspergillosis in mechanically ventilated patients [J]. Clin Infect Dis, 2022, 74(1): 83-91.
18
Harrigan JJ, Abdallah HO, Clarke EL, et al. Respiratory microbiome disruption and risk for ventilator-associated lower respiratory tract infection [J]. Clin Infect Dis, 2022, 74(9): 1564-1571.
19
Kayaaslan B, Eser F, Kaya Kalem A, et al. Characteristics of candidemia in COVID-19 patients; increased incidence, earlier occurrence and higher mortality rates compared to non-COVID-19 patients [J]. Mycoses, 2021, 64(9): 1083-1091.
20
Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections [J]. Lancet, 2003, 362(9398): 1828-1838.
21
Bitar D, Lortholary O, Le Strat Y, et al. Population-based analysis of invasive fungal infections, France, 2001-2010 [J]. Emerg Infect Dis, 2014, 20(7): 1149-1155.
22
White PL, Dhillon R, Cordey A, et al. A national strategy to diagnose coronavirus disease 2019-associated invasive fungal disease in the intensive care unit [J]. Clin Infect Dis, 2021, 73(7): e1634-e1644.
23
Li H, Liu L, Zhang DY, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses [J]. Lancet, 2020, 395(10235): 1517-1520.
24
Henao-Martínez AF, Corbisiero MF, Salter I, et al. Invasive pulmonary aspergillosis real-world outcomes: clinical features and risk factors associated with increased mortality [J]. Med Mycol, 2023, 61(8): myad074.
25
Kariyawasam RM, Dingle TC, Kula BE, et al. Defining COVID-19-associated pulmonary aspergillosis: systematic review and meta-analysis [J]. Clin Microbiol Infect, 2022, 28(7): 920-927.
26
Kula BE, Clancy CJ, Nguyen MH, et al. Invasive mould disease in fatal COVID-19: a systematic review of autopsies [J]. Lancet Microbe, 2021, 2(8): e405-e414.
27
Pasquier G, Bounhiol A, Robert Gangneux F, et al. A review of significance of aspergillus detection in airways of ICU COVID-19 patients [J]. Mycoses, 2021, 64(9): 980-988.
28
Hoenigl M, Seidel D, Carvalho A, et al. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries [J]. Lancet Microbe, 2022, 3(7): e543-e552.
29
Loh JT, Lam KP. Fungal infections: immune defense, immunotherapies and vaccines [J]. Adv Drug Deliv Rev, 2023, 196: 114775.
30
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor [J]. Cell, 2020, 181(2): 271-280.
31
Dewi IMW, Janssen NaF, Rosati D, et al. Invasive pulmonary aspergillosis associated with viral pneumonitis [J]. Curr Opin Microbiol, 2021, 62: 21-27.
32
Chua RL, Lukassen S, Trump S, et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis [J]. Nat Biotechnol, 2020, 38(8): 970-979.
33
Bertuzzi M, Hayes GE, Icheoku UJ, et al. Anti-aspergillus activities of the respiratory epithelium in health and disease [J]. J Fungi (Basel), 2018, 4(1): 8.
34
Liu H, Lee MJ, Solis NV, et al. Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion [J]. Nat Microbiol, 2016, 2: 16211.
35
Salazar F, Bignell E, Brown GD, et al. Pathogenesis of respiratory viral and fungal coinfections [J]. Clin Microbiol Rev, 2022, 35(1): e0009421.
36
Dorward DA, Russell CD, Um IH, et al. Tissue-specific immunopathology in fatal COVID-19 [J]. Am J Respir Crit Care Med, 2021, 203(2): 192-201.
37
Laforge M, Elbim C, Frère C, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19 [J]. Nat Rev Immunol, 2020, 20(9): 515-516.
38
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages [J]. Nat Rev Immunol, 2020, 20(6): 355-362.
39
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion [J]. Nat Rev Immunol, 2015, 15(8): 486-499.
40
Schwartz MD, Emerson SG, Punt J, et al. Decreased naive T-cell production leading to cytokine storm as cause of increased COVID-19 severity with comorbidities [J]. Aging Dis, 2020, 11(4): 742-745.
41
Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19 [J]. Nature, 2020, 584(7821): 463-469.
42
Qin C, Zhou LQ, Hu ZW, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China [J]. Clin Infect Dis, 2020, 71(15): 762-768.
43
Hadjadj J, Yatim N, Barnabei L, et al. Impaired type Ⅰ interferon activity and inflammatory responses in severe COVID-19 patients [J]. Science, 2020, 369(6504): 718-724.
44
Bitar D, Van Cauteren D, Lanternier F, et al. Increasing incidence of zygomycosis (mucormycosis), France, 1997-2006 [J]. Emerg Infect Dis, 2009, 15(9): 1395-1401.
45
John TM, Jacob CN, Kontoyiannis DP. When uncontrolled diabetes mellitus and severe COVID-19 converge: the perfect storm for mucormycosis [J]. J Fungi (Basel), 2021, 7(4): 298.
46
Elezagic D, Johannis W, Burst V, et al. Venous blood gas analysis in patients with COVID-19 symptoms in the early assessment of virus positivity [J]. J Lab Med, 2021, 45(1): 27-30.
47
Sonnweber T, Boehm A, Sahanic S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients' performance: a prospective observational cohort study [J]. Respir Res, 2020, 21(1): 276.
48
Gebremariam T, Lin L, Liu MF, et al. Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis [J]. J Clin Invest, 2016, 126(6): 2280-2294.
49
Armstrong-James D, Youngs J, Bicanic T, et al. Confronting and mitigating the risk of COVID-19 associated pulmonary aspergillosis [J]. Eur Respir J, 2020, 56(4): 2002554.
50
Chong WH, Neu KP. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review [J]. J Hosp Infect, 2021, 113: 115-129.
51
Schauwvlieghe AFAD, Rijnders BJA, Philips N, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study [J]. Lancet Respir Med, 2018, 6(10): 782-792.
52
Koehler P, Bassetti M, Chakrabarti A, et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance [J]. Lancet Infect Dis, 2021, 21(6): e149-e162.
53
Bassetti M, Giacobbe DR, Agvald-Ohman C, et al. Invasive fungal diseases in adult patients in intensive care unit (FUNDICU): 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM [J]. Intensive Care Med, 2024, 50(4): 502-515.
54
Donnelly JP, Chen SC, Kauffman CA, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium [J]. Clin Infect Dis, 2020, 71(6): 1367-1376.
55
WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis [J]. JAMA, 2020, 324(13): 1330-1341.
56
Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with COVID-19 [J]. N Engl J Med, 2021, 384(8): 693-704.
57
薛明, 陈辉, 谢剑锋, 等. 激素治疗能够降低重症COVID-19患者病死率? 结论尚早 [J/OL]. 中华重症医学电子杂志, 2021, 7(3): 204-207.
58
Chen H, Xie JF, Su N, et al. Corticosteroid therapy is associated with improved outcome in critically ill patients with COVID-19 with hyperinflammatory phenotype [J]. Chest, 2021, 159(5): 1793-1802.
59
Mulakavalupil B, Vaity C, Joshi S, et al. Absence of case of mucormycosis (March 2020-May 2021) under strict protocol driven management care in a COVID-19 specific tertiary care intensive care unit [J]. Diabetes Metab Syndr, 2021, 15(4): 102169.
[1] 潘辰蕊, 杨冰洁, 沈会明, 王颖彦, 韩佳豪, 李嘉. 多模态超声联合免疫炎症指标预测乳腺癌腋窝淋巴结转移的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 969-975.
[2] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[3] 王婷文, 黄家晴, 卞晓洁, 陆晓峰, 管文贤. 基于CiteSpace和VOSviewer对胃肠道恶性肿瘤患者肠内免疫营养支持的文献计量分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 693-697.
[4] 陈雪梅, 郭宇桐, 刘锦程, 钱航, 王斌, 徐智. 二硫化钼负载铂钯联用氮化硼的新型传感器构建及对神经元特异性烯醇化酶的检测研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 860-865.
[5] 唐林娟, 王槿樾, 王欣, 黄娜, 杨凯. 嘌呤生物合成关键酶PAICS在肺腺癌中的表达及功能研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 942-948.
[6] 付建力, 李鹏飞, 尹珊珊, 张艳彬, 胥杰, 刘涌. 吸入性皮质类固醇/长效抗胆碱能药物/长效β2受体激动剂联用治疗慢性阻塞性肺疾病哮喘重叠综合征的临床研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 961-965.
[7] 郑庆藩, 徐嘉鸿, 胡新娅, 苏浩东, 林弘恺, 郑凯滨, 郭晓玲, 马泽珠. 免疫球蛋白在69例反复上呼吸道感染患儿中的表达及意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 1015-1018.
[8] 俞颖倩, 徐兴祥. 淋巴结转移与非转移对原发性支气管肺癌免疫微环境及免疫治疗的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 1027-1030.
[9] 王利皓, 罗世超, 唐强, 尚栋良, 段少博, 卢冰, 李海, 薛飞. 仑伐替尼和PD-1抑制剂预处理联合TACE序贯治疗CNLC分期Ⅲ期肝癌疗效及安全性[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 868-874.
[10] 许侨东, 马志延, 冯庚壬, 钟海彬, 刘坚锐, 古松钢. 肝肺多发性原发性癌转化治疗后行腹腔镜肝右前叶切除术一例(附视频)[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 973-976.
[11] 戴婧, 林敏, 胡迎春. 内镜黏膜下剥离术治疗以黏膜下隆起为表现的IgG4相关性胃病一例[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 676-680.
[12] 冉影, 刘瑞云, 王欣宇, 顾家琪, 韩宗泽, 李纪文, 杨辉, 王翛然, 王邦茂, 周璐. 瞬时弹性成像对自身免疫性肝炎肝纤维化的诊断效能及其影响因素[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 651-658.
[13] 王春茂, 韩鸣, 王子彤. 局限期小细胞肺癌新辅助治疗后完全病理学缓解五例[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 550-554.
[14] 林丽, 彭琨, 陈宏存, 李宏林, 姚宝忠, 石代伟. 免疫胶体金法、自体荧光法与肉眼辨认法在甲状腺切除术中识别可疑甲状旁腺组织的临床研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 433-439.
[15] 侯雨函, 姜福金, 王苏贵. 膀胱癌免疫治疗的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 471-475.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?