切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (02) : 173 -179. doi: 10.3877/cma.j.issn.2096-1537.2022.02.014

综述

光生物调节在重症肺部感染辅助治疗中的研究进展
郭清清1, 林建东1,()   
  1. 1. 350005 福州,福建医科大学附属第一医院重症医学科
  • 收稿日期:2022-01-16 出版日期:2022-07-04
  • 通信作者: 林建东

Advances in photobiomodulation as adjunctive therapy in severe pulmonary infections

Qingqing Guo1, Jiandong Lin1,()   

  1. 1. Department of Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
  • Received:2022-01-16 Published:2022-07-04
  • Corresponding author: Jiandong Lin
引用本文:

郭清清, 林建东. 光生物调节在重症肺部感染辅助治疗中的研究进展[J]. 中华重症医学电子杂志, 2022, 08(02): 173-179.

Qingqing Guo, Jiandong Lin. Advances in photobiomodulation as adjunctive therapy in severe pulmonary infections[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(02): 173-179.

肺部感染是临床最常见的感染性疾病之一,其发病率和病死率逐年上升,重症肺部感染,尤其是COVID-19,给社会和家庭带来巨大的负担。因此,我们迫切需要研究和开发可用于控制肺部感染发生发展的有效抗菌抗炎策略。光生物调节(PBM)治疗主要是通过细胞内的光化学反应影响细胞代谢途径和基因表达模式,具有抗菌杀菌、消除炎症、调节免疫、促进血液循环和组织修复等作用,逐渐成为医学领域的新型治疗手段。本综述以PBM治疗的细胞和分子机制为切入点,深入探讨PBM辅助治疗肺部感染的可行性,以期为临床重症肺部感染患者寻求新的治疗策略,改善患者预后。

Pulmonary infection is one of the commonest infectious diseases in clinical practice. Its incidence and mortality rates increase year by year. Severe pneumonia, especially COVID-19, places a significant burden on societies and families. There is, therefore, an urgent need to develop more effective antimicrobial and anti-inflammatory strategies to control severe pulmonary infections. PBM, with intracellular photochemical reactions affecting cellular metabolic pathways and gene expression patterns, is a novel therapeutic tool in medicine. It has antibacterial and bactericidal effects, eliminate inflammation, regulate immunity, and promote blood circulation and tissue repair. This review focuses on the cellular and molecular mechanisms of PBM to explore the feasibility of PBM as adjuvant therapy for pulmonary infection and find new treatment strategies for patients with severe pneumonia and improve their prognosis.

1
Chen C, Hou WH, Chan ESY, et al. Phototherapy for treating pressure ulcers [J]. Cochrane Database Syst Rev, 2014, 11(7): CD009224.
2
Opel DR, Hagstrom E, Pace AK, et al. Light-emitting diodes: a brief review and clinical experience [J]. J Clin Aesthet Dermatol, 2015, 8(6): 36-44.
3
Musher DM, Abers MS, Bartlett JG. Evolving understanding of the causes of pneumonia in adults, with special attention to the role of Pneumococcus [J]. Clin Infect Dis, 2017, 65(10): 1736-1744.
4
Jawhara S, Mordon S. Monitoring of bactericidal action of laser by in vivo imaging of bioluminescent E. coli in a cutaneous wound infection [J]. Lasers Med Sci, 2006, 21(3): 153-159.
5
Leyane TS, Jere SW, Houreld NN. Cellular signalling and photobiomodulation in chronic wound repair [J]. Int J Mol Sci, 2021, 22(20): 11223.
6
Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: a review of red and near-infrared wavelength applications [J]. Cell Biochem Funct, 2021, 39(5): 596-612.
7
Kouhkheil R, Fridoni M, Piryaei A, et al. The effect of combined pulsed wave low-level laser therapy and mesenchymal stem cell-conditioned medium on the healing of an infected wound with methicillin-resistant Staphylococcal aureus in diabetic rats [J]. J Cell Biochem, 2018, 119(7): 5788-5797.
8
Jeng JH, Chen KW, Lin CP, et al. Ultrastructural changes of the tooth root surface by Nd: YAG laser irradiation followed by citric acid and tetracycline [J]. J Formos Med Assoc, 1999, 98(4): 242-247.
9
Hashmi JT, Huang YY, Osmani BZ, et al. Role of low-level laser therapy in neurorehabilitation [J]. PM R, 2010, 2(2): S292-S305.
10
Aimbire F, Albertini R, Pacheco MTT, et al. Low-level laser therapy induces dose-dependent reduction of TNF alpha levels in acute inflammation [J]. Photomed Laser Surg, 2006, 24(1): 33-37.
11
Chung H, Dai T, Sharma SK, et al. The nuts and bolts of low-level laser (light) therapy [J]. Ann Biomed Eng, 2012, 40(2): 516-533.
12
Zamani ARN, Saberianpour S, Geranmayeh MH, et al. Modulatory effect of photobiomodulation on stem cell epigenetic memory: a highlight on differentiation capacity [J]. Lasers Med Sci, 2020, 35(2): 299-306.
13
Esmaeelinejad M, Bayat M. Effect of low-level laser therapy on the release of interleukin-6 and basic fibroblast growth factor from cultured human skin fibroblasts in normal and high glucose mediums [J]. J Cosmet Laser Ther, 2013, 15(6): 310-317.
14
Kuffler DP. Photobiomodulation in promoting wound healing: a review [J]. Regen Med, 2016, 11(1): 107-122.
15
Alayat MSM, Atya AM, Ali MME, et al. Correction to: long-term effect of high-intensity laser therapy in the treatment of patients with chronic low back pain: a randomized blinded placebo-controlled trial [J]. Lasers Med Sci, 2020, 35(1): 297.
16
Huang Y-Y, Nagata K, Tedford CE, et al. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro [J]. J Biophotonics, 2013, 6(10): 829-838.
17
Mester E, Szende B, Gärtner P. The effect of laser beams on the growth of hair in mice [J]. Radiobiol Radiother (Berl), 1968, 9(5): 621-626.
18
Karu TI. Molecular mechanism of the therapeutic effect of low-intensity laser irradiation [J]. Dokl Akad Nauk SSSR, 1986, 291(5): 1245-1249.
19
Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation [J]. Photochem Photobiol, 2018, 94(2): 199-212.
20
Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation [J]. AIMS Biophys, 2017, 4(3): 337-361.
21
Ball KA, Castello PR, Poyton RO. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: implications for phototherapy [J]. J Photochem Photobiol B, 2011, 102(3): 182-191.
22
Rohacs T. Phosphoinositide regulation of TRP channels [J]. Handb Exp Pharmacol, 2014, 223: 1143-1176.
23
Salehpour F, Mahmoudi J, Kamari F, et al. Brain photobiomodulation therapy: a narrative review [J]. Mol Neurobiol, 2018, 55(8): 6601-6636.
24
Wang X, Tian F, Reddy DD, et al. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study [J]. J Cereb Blood Flow Metab, 2017, 37(12): 3789-3802.
25
Hwang J, Castelli DM, Gonzalez-Lima F. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise [J]. Lasers Med Sci, 2016, 31(6): 1151-1160.
26
Grillo SL, Duggett NA, Ennaceur A, et al. Non-invasive infra-red therapy (1072 nm) reduces β-amyloid protein levels in the brain of an Alzheimer's disease mouse model, TASTPM [J]. J Photochem Photobiol B, 2013, 123: 13-22.
27
Wang L, Jacques SL, Zheng L. MCML--Monte Carlo modeling of light transport in multi-layered tissues [J]. Comput Methods Programs Biomed, 1995, 47(2): 131-146.
28
Kujawa J, Pasternak K, Zavodnik I, et al. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation [J]. Lasers Med Sci, 2014, 29(5): 1663-1668.
29
Jankowski M, Gawrych M, Adamska U, et al. Low-level laser therapy (LLLT) does not reduce subcutaneous adipose tissue by local adipocyte injury but rather by modulation of systemic lipid metabolism [J]. Lasers Med Sci, 2017, 32(2): 475-479.
30
Hamblin MR. Photobiomodulation for traumatic brain injury and stroke [J]. J Neurosci Res, 2018, 96(4): 731-743.
31
Suardi N, Sodipo BK, Mustafa MZ, et al. Effect of visible laser light on ATP level of anaemic red blood cell [J]. J Photochem Photobiol B, 2016, 162: 703-706.
32
Chen ACH, Arany PR, Huang YY, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts [J]. PLoS One, 2011, 6(7): e22453.
33
De Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy [J]. IEEE J Sel Top Quantum Electron, 2016, 22(3): 7000417.
34
Avci P, Nyame TT, Gupta GK, et al. Low-level laser therapy for fat layer reduction: a comprehensive review [J]. Lasers Surg Med, 2013, 45(6): 349-357.
35
Karu TI, Pyatibrat LV, Kalendo GS. Photobiological modulation of cell attachment via cytochrome c oxidase [J]. Photochem Photobiol Sci, 2004, 3(2): 211-216.
36
Dos Santos SA, Serra AJ, Stancker TG, et al. Effects of photobiomodulation therapy on oxidative stress in muscle injury animal models: a systematic review [J]. Oxid Med Cell Longev, 2017, 2017: 5273403.
37
Heron M. Deaths: leading causes for 2013 [J]. Natl Vital Stat Rep, 2016, 65(2): 1-95.
38
Vandenberg O, Martiny D, Rochas O, et al. Considerations for diagnostic COVID-19 tests [J]. Nat Rev Microbiol, 2021, 19(3): 171-183.
39
Yoneyama H, Katsumata R. Antibiotic resistance in bacteria and its future for novel antibiotic development [J]. Biosci Biotechnol Biochem, 2006, 70(5): 1060-1075.
40
Prudhomme M, Attaiech L, Sanchez G, et al. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae [J]. Science, 2006, 313(5783): 89-92.
41
Wang Y, Ferrer-Espada R, Baglo Y, et al. Photoinactivation of Neisseria gonorrhoeae: a paradigm-changing approach for combating antibiotic-resistant gonococcal infection [J]. J Infect Dis, 2019, 220(5): 873-881.
42
Dungel P, Hartinger J, Chaudary S, et al. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing [J]. Lasers Surg Med, 2014, 46(10): 773-780.
43
Sabino CP, Wainwright M, Ribeiro MS, et al. Global priority multidrug-resistant pathogens do not resist photodynamic therapy [J]. J Photochem Photobiol B, 2020, 208: 111893.
44
Zhang Y, Zhu Y, Gupta A, et al. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections [J]. J Infect Dis, 2014, 209(12): 1963-1971.
45
D'ercole S, Di Fermo P, Di Giulio M, et al. Near-infrared NIR irradiation and sodium hypochlorite: an efficacious association to counteract the Enterococcus faecalis biofilm in endodontic infections [J]. J Photochem Photobiol B, 2020, 210: 111989.
46
Geralde MC, Leite IS, Inada NM, et al. Pneumonia treatment by photodynamic therapy with extracorporeal illumination-an experimental model [J]. Physiol Rep, 2017, 5(5): e13190.
47
Cassidy CM, Donnelly RF, Elborn JS, et al. Photodynamic antimicrobial chemotherapy (PACT) in combination with antibiotics for treatment of Burkholderia cepacia complex infection [J]. J Photochem Photobiol B, 2012, 106: 95-100.
48
Cassidy CM, Tunney MM, Magee ND, et al. Drug and light delivery strategies for photodynamic antimicrobial chemotherapy (PACT) of pulmonary pathogens: a pilot study [J]. Photodiagnosis Photodyn Ther, 2011, 8(1): 1-6.
49
Enwemeka CS, Bumah VV, Mokili JL. Pulsed blue light inactivates two strains of human coronavirus [J]. J Photochem Photobiol B, 2021, 222: 112282.
50
De Santis R, Luca V, Näslund J, et al. Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths [J]. J Photochem Photobiol, 2021, 8: 100082.
51
Zupin L, Gratton R, Fontana F, et al. Blue photobiomodulation LED therapy impacts SARS-CoV-2 by limiting its replication in Vero cells [J]. J Biophotonics, 2021, 14(4): e202000496.
52
Choi S-Y, Cho B. Extermination of influenza virus H1N1 by a new visible-light-induced photocatalyst under fluorescent light [J]. Virus Res, 2018, 248: 71-73.
53
Hasegawa T, Tamura M, Satoh K, et al. Inactivation of goose parvovirus, avian influenza virus and phage by photocatalyst on polyethylen terephthalate film under light emitting diode (LED) [J]. J Vet Med Sci, 2013, 75(8): 1091-1093.
54
Dos Anjos C, Sabino CP, Bueris V, et al. Antimicrobial blue light inactivation of international clones of multidrug-resistant Escherichia coli ST10, ST131 and ST648 [J]. Photodiagnosis Photodyn Ther, 2019, 27: 51-53.
55
Dos Anjos C, Sellera FP, Ribeiro MS, et al. Antimicrobial blue light and photodynamic therapy inhibit clinically relevant β-lactamases with extended-spectrum (ESBL) and carbapenemase activity [J]. Photodiagnosis Photodyn Ther, 2020, 32: 102086.
56
Mafra De Lima F, Villaverde AB, Salgado MA, et al. Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat [J]. J Photochem Photobiol B, 2010, 101(3): 271-278.
57
Da Cunha Moraes G, Vitoretti LB, De Brito AA, et al. Low-level laser therapy reduces lung inflammation in an experimental model of chronic obstructive pulmonary disease involving P2X7 receptor [J]. Oxid Med Cell Longev, 2018, 2018: 6798238.
58
Brochetti RA, Leal MP, Rodrigues R, et al. Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice [J]. Lasers Med Sci, 2017, 32(8): 1825-1834.
59
De Brito AA, Da Silveira EC, Rigonato-Oliveira NC, et al. Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: relevance to cytokines secretion from lung structural cells [J]. J Photochem Photobiol B, 2020, 203: 111731.
60
Mokmeli S, Vetrici M. Low level laser therapy as a modality to attenuate cytokine storm at multiple levels, enhance recovery, and reduce the use of ventilators in COVID-19 [J]. Can J Respir Ther, 2020, 56: 25-31.
61
Mahmudpour M, Roozbeh J, Keshavarz M, et al. COVID-19 cytokine storm: the anger of inflammation [J]. Cytokine, 2020, 133: 155151.
62
Miranda Da Silva C, Peres Leal M, Brochetti RA, et al. Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure [J]. PLoS One, 2015, 10(11): e0142816.
63
Oliveira MC, Greiffo FR, Rigonato-Oliveira NC, et al. Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS [J]. J Photochem Photobiol B, 2014, 134: 57-63.
64
De La Torre JC, Olmo AD, Valles S. Can mild cognitive impairment be stabilized by showering brain mitochondria with laser photons? [J]. Neuropharmacology, 2020, 171: 107841.
65
Miyai K, Kawauchi S, Kato T, et al. Axonal damage and behavioral deficits in rats with repetitive exposure of the brain to laser-induced shock waves: effects of inter-exposure time [J]. Neurosci Lett, 2021, 749: 135722.
66
Xuan W, Huang L, Hamblin MR. Repeated transcranial low-level laser therapy for traumatic brain injury in mice: biphasic dose response and long-term treatment outcome [J]. J Biophotonics, 2016, 9(11-12): 1263-1272.
67
Vetrici MA, Mokmeli S, Bohm AR, et al. Evaluation of adjunctive photobiomodulation (PBMT) for COVID-19 pneumonia via clinical status and pulmonary severity indices in a preliminary trial [J]. J Inflamm Res, 2021, 14: 965-979.
68
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review [J]. Int J Radiat Biol, 2019, 95(2): 120-143.
69
Sigman SA, Mokmeli S, Monici M, et al. A 57-year-old African American man with severe COVID-19 pneumonia who responded to supportive photobiomodulation therapy (PBMT): first use of PBMT in COVID-19 [J]. Am J Case Rep, 2020, 21: e926779.
70
Williams RK, Raimondo J, Cahn D, et al. Whole-organ transdermal photobiomodulation (PBM) of COVID-19: A 50-patient case study [J]. J Biophotonics, 2021, 15(2): e202100194.
71
Amirov NB. Parameters of membrane permeability, microcirculation, external respiration, and trace element levels in the drug-laser treatment of pneumonia [J]. Ter Arkh, 2002, 74(3): 40-43.
72
Puri MM, Arora VK. Role of gallium arsenide laser irradiation at 890 nm as an adjunctive to anti-tuberculosis drugs in the treatment of pulmonary tuberculosis [J]. Indian J Chest Dis Allied Sci, 2003, 45(1): 19-23.
73
Mehani SHM. Immunomodulatory effects of two different physical therapy modalities in patients with chronic obstructive pulmonary disease [J]. J Phys Ther Sci, 2017, 29(9): 1527-1533.
74
Kashanskaia EP, Fedorov AA. Low-intensity laser radiation in the combined treatment of patients with chronic obstructive bronchitis [J]. Vopr Kurortol Fizioter Lech Fiz Kult, 2009, (2): 19-22.
75
de Souza GHM, Ferraresi C, Moreno MA, et al. Acute effects of photobiomodulation therapy applied to respiratory muscles of chronic obstructive pulmonary disease patients: a double-blind, randomized, placebo-controlled crossover trial [J]. Lasers Med Sci, 2020, 35(5): 1055-1063.
[1] 张蒙, 徐林林, 王燕, 李玉峰, 王洁琼. 基于屈布勒-罗斯理论的心理管理对重症肺炎合并呼吸衰竭患者的干预作用[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 43-47.
[2] 高娟, 薄祥树, 颜玲玲, 张冬梅, 钱晓芹. 重症超声联合氧合指数对重症肺炎患者预后评估价值的探讨[J]. 中华危重症医学杂志(电子版), 2022, 15(05): 383-388.
[3] 贺雨, 王玉娟, 高蓉, 李晗, 胡长英, 杨俊玲. 新型生物标志物可溶性髓样细胞触发受体-1在重症肺炎早期诊断中的应用价值[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 307-312.
[4] 沈杨, 余海波, 曾强英. 外周血可溶性Fas蛋白及其配体、髓过氧化物酶水平对重症肺炎患儿预后不良的预测价值[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 268-274.
[5] 盛名, 王敬文, 郭爽, 万文蕾. 重症肺炎NT-proBNP动态演变与患者预后风险的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 379-381.
[6] 赵明丽, 廖敏, 王玉忠. 重症肺炎患者乳酸脱氢酶、载脂蛋白A1、铁蛋白水平与病情的关系及预后意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 233-235.
[7] 胡中英, 仇海兵, 孙艳. 莫西沙星联合亚胺培南西司他丁对重症肺炎的疗效及对炎症指标的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 209-211.
[8] 周旻忞, 张恒喜, 冯华, 施林燕. 超声膈肌功能评估对重症肺炎伴呼吸衰竭患者机械通气撤机的指导意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 98-100.
[9] 杨荣, 李院玲. 美罗培南联合参麦注射液治疗重症肺炎疗效及对心肌的保护作用[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 866-869.
[10] 崔鑫, 牛俊, 孙鑫, 李文, 徐心坦. 重症肺炎支原体肺炎患儿血清sTREM-1和SP-D的变化及意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 863-865.
[11] 陈双, 李莲, 彭余, 杨再林. T淋巴细胞及细胞因子在预测肺炎重症转化中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 750-753.
[12] 钟育武, 赵展庆, 李堪董. 重症肺炎并发呼吸衰竭PCT、hs-CRP、CER表达及与心肌损害的关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 727-729.
[13] 陈晨, 鲁厚清. 血乳酸水平联合NLR对ICU重症肺炎预后风险预测[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 551-553.
[14] 王雷, 华山, 陆振. 布地奈德与头孢哌酮舒巴坦钠对小儿重症肺炎的疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 536-538.
[15] 邱学荣, 张秀琴, 张欢, 刘婷, 高翠琴. 动态监测SAA给予抗生素在电子支气管镜联合普米克令舒治疗重症肺炎中的价值研究[J]. 中华临床医师杂志(电子版), 2023, 17(03): 308-313.
阅读次数
全文


摘要