切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (04) : 354 -362. doi: 10.3877/cma.j.issn.2096-1537.2018.04.012

所属专题: 文献

基础研究

外源性一氧化碳释放分子2对脂多糖刺激人中性粒细胞杀菌功能的调控作用及其机制
宋明明1,(), 孙炳伟1, 李平2, 丁盛1   
  1. 1. 215002 江苏苏州,南京医科大学附属苏州医院烧伤整形科
    2. 215002 江苏苏州,南京医科大学附属苏州医院消化营养中心
  • 收稿日期:2017-12-13 出版日期:2018-11-28
  • 通信作者: 宋明明
  • 基金资助:
    国家自然科学基金(81471903,81272148); 苏州科技计划项目(sys2018086)

Regulation effect and the relevant mechanism of CORM-2 on bactericidal function in LPS-induced neutrophils

Mingming Song1,(), Bingwei Sun1, Ping Li2, Sheng Ding1   

  1. 1. Department of Burns and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215002, China
    2. Digestive Nutrition Center, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215002, China
  • Received:2017-12-13 Published:2018-11-28
  • Corresponding author: Mingming Song
  • About author:
    Corresponding author: Song Mingming, Email:
引用本文:

宋明明, 孙炳伟, 李平, 丁盛. 外源性一氧化碳释放分子2对脂多糖刺激人中性粒细胞杀菌功能的调控作用及其机制[J/OL]. 中华重症医学电子杂志, 2018, 04(04): 354-362.

Mingming Song, Bingwei Sun, Ping Li, Sheng Ding. Regulation effect and the relevant mechanism of CORM-2 on bactericidal function in LPS-induced neutrophils[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(04): 354-362.

目的

探讨外源性一氧化碳释放分子2(CORM-2)对脂多糖(LPS)刺激人中性粒细胞杀菌功能的调控作用及其机制。

方法

采集1名健康成年志愿者的静脉血,分离出中性粒细胞后,按随机数字表法分为正常对照组、LPS组、LPS+10 μmol/L CORM-2组、LPS+50 μmol/L CORM-2组、LPS+无活性CORM-2(iCORM-2)组。正常对照组不进行任何处理;LPS组采用1 μg/ml的LPS刺激;LPS+10 μmol/L CORM-2组、LPS+50 μmol/L CORM-2组、LPS+iCORM-2组在采用上述相同剂量LPS刺激的同时,分别采用10 μmol/L CORM-2、50 μmol/L CORM-2、50 μmol/L iCORM-2进行干预,常规培养1 h后检测相关指标。用琼脂糖趋化模型检测中性粒细胞的趋化功能,流式细胞仪检测细胞颗粒释放及吞噬功能,酶联免疫吸附试验(ELISA)监测中性粒细胞颗粒释放功能的改变,蛋白质印迹法检测磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)信号通路蛋白Akt磷酸化的表达水平。以上指标均重复测定3次,对数据行单因素方差分析、SNK检验。

结果

正常对照组、LPS组、LPS+10 μmol/L CORM-2组、LPS+50 μmol/L CORM-2组、LPS+iCORM-2组细胞的趋化距离分别为(2241.33±67.30)、(919.00±55.02)、(1784.33±17.79)、(2202.33±91.69)、(1000.00±55.02)μm,LPS组细胞趋化距离较正常对照组明显降低(P<0.01);LPS组和LPS+iCORM-2组细胞的迁移距离较正常对照组明显降低(P<0.05);LPS+10 μmol/L CORM-2组和LPS+50 μmol/L CORM-2组细胞迁移距离较LPS组明显增加(P<0.01);LPS+iCORM-2组细胞细胞迁移距离与LPS组相近(P>0.05)。对于中性粒细胞四级颗粒的释放研究,LPS刺激后中性粒细胞的颗粒释放均发生了明显的增加,而使用10 μmol/L与50 μmol/L CORM-2干预后,中性粒细胞的颗粒释放均得到明显抑制(P<0.01);使用50 μmol/L iCORM-2干预后中性粒细胞颗粒释放与LPS组相近(P>0.05)。用LPS刺激后中性粒细胞Phagocytosis平均荧光强度较正常对照组升高(P<0.05);而使用10 μmol/L与50 μmol/L CORM-2干预后中性粒细胞Phagocytosis平均荧光强度较LPS组明显增高(P<0.01);使用50 μmol/L iCORM-2干预后中性粒细胞Phagocytosis平均荧光强度为与LPS组相近(P>0.05)。LPS刺激后中性粒细胞蛋白Akt磷酸化与总Akt比值灰度扫描值比值与正常对照组相近(P>0.05);而使用10 μmol/L与50 μmol/L CORM-2干预后中性粒细胞蛋白Akt磷酸化与总Akt比值灰度扫描值比值较正常对照组、LPS组明显增高(P<0.05);使用50 μmol/L iCORM-2干预后中性粒细胞蛋白Akt磷酸化与总Akt比值灰度扫描值比值与LPS组相近(P>0.05)。

结论

CORM-2干预可以明显增加LPS刺激后中性粒细胞的早期凋亡,恢复中性粒细胞的趋化功能,并促进中性粒细胞的吞噬功能。CORM-2调控LPS刺激后中性粒细胞凋亡与吞噬功能,其机制可能与CORM-2促进磷酸化Akt有关。

Objective

To explore the regulated effect of exogenous carbon monoxide releasing molecule 2 (CORM-2) on phagocytosis of LPS-chanllanged neutrophils and its relevant mechanism.

Methods

Venous blood of a healthy adult volunteer was collected and neutrophils were isolated. Then the neutrophils were divided into five groups according to the random number table, including control, LPS, LPS+ CORM-2 (10 and 50 μmol/L) and LPS+ iCORM-2 group. The control group did not receive any treatment. The LPS group treated with LPS (1 μg/ml) for 60 min. The CORM-2 group and iCORM-2 group underwent the same stimulation and immediate administrated indicated dosage of CORM-2 (10 and 50 μmol/L) and iCORM-2 (50 μmol/L). After neutrophils isolation and individual treatment, the chemotaxis was measured using agarosechemotaxis model. Besides, the early apoptosis rate and phagocytosis of neutrophils was determined by flow cytometry and the level of Akt phosphorylation in MAPK signaling were detected by Western blot. The parameters above were processed with 3 times repeated assayed and all values were analyzed using one-way analysis of variation, and SNK test.

Results

As shown in chemotaxis measured, compared with control group, there was a significant decrease of the chemotaxis distance when neutrophils stimulated with LPS and iCORM-2, (both P<0.05). Compared with LPS group, treated with CORM-2 (10 μmol/L and 50 μmol/L) sharply recovered the chemotaxis of neutrophil (both P< 0.01). The chemotaxis distanceof neutrophil of iCORM-2 group was similar with LPS group (P>0.05). As shown in neutrophil exocytosis, there was a slightly increase of exocytosis when neutrophil stimulate with LPS compared with control group (P>0.05). Whereas there was a significant decrease of exocytosis when treated with CORM-2 (10 μmol/L and 50 μmol/L) (both P<0.01). The exocytosis of neutrophil of iCORM-2 group was similar with LPS group (P>0.05). In terms of phagocytosis, compared with control group, there was a significant increase with LPS (P<0.05). Compared with LPS group, treated with CORM-2 (10 μmol/L and 50 μmol/L) sharply elevated the phagocytosis of neutrophil (both P<0.01). The phagocytosis of iCORM-2 group was similar with LPS group (both P>0.05). Compared with control group, it was similar of the level of Akt phosphorylation with LPS and iCORM-2 (all P>0.05). Compared with control group, the level of Akt phosphorylation was increased in CORM-2 (10 μmol/L and 50 μmol/L) groups (both P<0.05). Compared with LPS group, the level of Akt phosphorylation was increased in CORM-2 (10 μmol/L and 50 μmol/L) groups (both P<0.05).

Conclusion

CORM-2 can promote the apoptosis in LPS-chanllaged neutrophils, sharply recover the chemotaxis and promoted the phagocytosis. The possible mechanism of CORM-2 regulated the apoptosis and phagocytosis of LPS-induced neutrophil is related with the elevation of phosphorylation of Akt.

图1 5组琼脂糖细胞迁移模型检测下中性粒细胞迁移距离(光镜×10物镜)。1a.正常对照组;1b. LPS组(10×物镜),较图1a明显降低;1c. LPS+10 μmoL CORM-2组(10×物镜),较图1b增加;1d. LPS+50 μmoL CORM-2组,较图1c进一步增加;1e. LPS+iCORM-2组(10×物镜),与图1b相近;黑色箭头指示为中性粒细胞,左边空洞为细胞,右边为趋化物fMLP;CORM-2为外源性一氧化碳释放分子2,iCORM-2为无活性CORM-2
图2 5组中性粒细胞不同刺激时其特殊颗粒释放CD35释放MCF比较。2a.正常对照组;2b. LPS组;2c. LPS+10 μmol/L CORM-2组;2d. LPS+50 μmol/L CORM-2组;2e. LPS+iCORM-2组
图3 5组中性粒细胞不同刺激时MMP-9释放比较
图4 5组中性粒细胞不同刺激时其初级颗粒释放CD63释放MCF比较。4a.正常对照组;4b. LPS组;4c. LPS+10 μmol/L CORM-2组;4d. LPS+50 μmol/L CORM-2组,较图4c进一步增加;4e. LPS+iCORM-2组
图5 5组中性粒细胞不同刺激时其特殊颗粒释放CD66b释放MCF比较。5a.正常对照组;5b. LPS组;5c. LPS+10 μmol/L CORM-2组;5d. LPS+50 μmol/L CORM-2组,较图5c进一步增加;5e. LPS+iCORM-2组
图6 5组流式细胞仪检测下中性粒细胞细胞吞噬功能改变。6a.正常对照组;6b. LPS组,较图6a稍增多;6c. LPS+10 μmol/L CORM-2组,较图6a、6b明显增加;6d. LPS+50 μmol/L CORM-2组,较图6c进一步增加;6e. LPS+50 μmol/L iCORM-2组,较图6a增加,与图6b相近
图7 CORM-2对中性粒细胞蛋白Akt的影响
1
Sakurai K, Miyashita T, Okazaki M, et al. Role for neutrophil extracellular traps (NETs) and platelet aggregation in early sepsis-induced hepatic dysfunction [J]. In Vivo, 2017, 31(6): 1051-1058.
2
Shen XF, Cao K, Jiang JP, et al. Neutrophil dysregulation during sepsis: an overview and update [J]. J Cell Mol Med, 2017, 21(9): 1687-1697.
3
Şafak B, Baykan Ö, Kılınç O, et al. The Importance of Mean Neutrophil Volume (MNV) Values in Differential Diagnosis of Bacterial Sepsis [J]. J Natl Med Assoc, 2017, 109(3): 211-214.
4
Yaroustovsky M, Abramyan M, Komardina E, et al. Selective LPS adsorption using polymyxin b-immobilized fiber cartridges in sepsis patients following cardiac surgery [J]. Shock, 2018, 49(6): 658-666.
5
Wang X, Qin W, Song M, et al. Exogenous carbon monoxide inhibits neutrophil infiltration in LPS-induced sepsis by interfering with FPR1 via p38 MAPK but not GRK2 [J]. Oncotarget, 2016, 7(23): 34250-34265.
6
姚咏明. 深化对血必净注射液治疗脓毒症新机制的认识 [J]. 中国中西医结合急救杂志, 2013, 4(1): 193-194.
7
姚咏明,栾樱译. 客观评价脓毒症生物标志物的临床意义 [J]. 中国危重病急救医学, 2012, 24(9): 517-519.
8
de Almeida L, Dorfleutner A, Stehlik C. In vivo analysis of neutrophil infiltration during LPS-induced peritonitis [J]. Bio Protoc, 2016, 6(19): e1945.
9
吕汪洄,秦魏婷,张锦丽, 等. 苦柯胺B对脂多糖诱导的脓毒症小鼠小肠炎症反应的抑制作用及分子机制 [J]. 中华危重病急救医学, 2015, 27(2): 121-126.
10
张锦丽,秦魏婷,吕汪洄, 等.苦柯胺B对脓毒症小鼠肺脏炎症反应的抑制作用 [J]. 中华危重病急救医学, 2014, 26(7): 493-497.
11
Yaroustovsky M, Rogalskaya E, Plyushch M, et al. The level of oxidative neutrophil response when determining endotoxin activity assay: a new biomarker for defining the indications and effectiveness of intensive care in patients with sepsis [J]. Int J Inflam, 2017,2017: 3495293.
12
Wang B, Chen G, Li J, et al. Neutrophil gelatinase-associated lipocalin predicts myocardial dysfunction and mortality in severe sepsis and septic shock [J]. Int J Cardiol, 2017, 227: 589-594.
13
Zonneveld R, Molema G, Plötz FB. Analyzing neutrophil morphology, mechanics, and motility in sepsis: options and challenges for novel bedside technologies [J]. Crit Care Med, 2016, 44(1): 218-228.
14
Qin W, Zhang J, Lv W, et al. Effect of carbon monoxide-releasing molecules Ⅱ-liberated CO on suppressing inflammatory response in sepsis by interfering with nuclear factor kappa B activation [J]. PLoS One, 2013,8(10): e75840.
15
Stolyarova E, Beduleva L, Sidorov A, et al. The role of neutrophil proteases in lps-induced production of regulatory rheumatoid factor that suppresses autoimmunity [J]. Endocr Metab Immune Disord Drug Targets, 2017, 17(1): 71-77.
16
Yang L, Zhou X, Huang W, et al. Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish [J]. Cell Physiol Biochem, 2017, 43(5): 2074-2087.
17
Deschildre A, Pichavant M, Engelmann I, et al. Virus-triggered exacerbation in allergic asthmatic children: neutrophilic airway inflammation and alteration of virus sensors characterize a subgroup of patients [J]. Respir Res, 2017,18(1): 191.
18
Huang G, Xu XC, Zhou JS, et al. Neutrophilic inflammation in the immune responses of chronic obstructive pulmonary disease: lessons from animal models [J]. J Immunol Res, 2017, 2017: 7915975.
19
Robertson JD, Ward JR, Avila-Olias M, et al. Targeting neutrophilic inflammation using polymersome-mediated cellular delivery [J]. J Immunol, 2017, 198(9): 3596-3604.
20
Jiang L, Fei D, Gong R, et al. CORM-2 inhibits TXNIP/NLRP3 inflammasome pathway in LPS-induced acute lung injury [J]. Inflamm Res, 2016, 65(11): 905-915.
21
Liu D, Liang F, Wang X, et al. Suppressive effect of CORM-2 on LPS-induced platelet activation by glycoprotein mediated HS1 phosphorylation interference [J]. PLoS One, 2013, 8(12): e83112.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[3] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[4] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[5] 杨柳, 陈佳, 孙雅娟, 陈娇, 谭明超, 龚明福. 抗中性粒细胞胞浆抗体相关性血管炎的胸部CT 及临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 744-749.
[6] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[7] 何慧玲, 鲁祖斌, 冯嘉莉, 梁声强. 术前外周血NLR和PLR对结肠癌术后肝转移的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 682-687.
[8] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[9] 张少青, 吕玉风, 董海霞. 中性粒细胞百分比/白蛋白比值对维持性血液透析患者全因死亡的预测作用[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 321-326.
[10] 帖璇, 苏晓乐, 王利华. 抗中性粒细胞胞质抗体相关性血管炎治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 345-351.
[11] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 孙文恺, 沈青, 杭丽, 张迎春. 纤维蛋白原与清蛋白比值、中性粒细胞与白蛋白比值、C反应蛋白与溃疡性结肠炎病情评估和预后的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 426-431.
[14] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?