切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (04) : 363 -367. doi: 10.3877/cma.j.issn.2096-1537.2018.04.013

所属专题: 文献

综述

重症中暑心脏损伤机制的研究进展
洪欣欣1, 刘志锋2, 苏磊2,()   
  1. 1. 510010 广州,解放军南部战区总医院重症医学科;510006 广州,广州中医药大学
    2. 510010 广州,解放军南部战区总医院重症医学科
  • 收稿日期:2017-12-05 出版日期:2018-11-28
  • 通信作者: 苏磊
  • 基金资助:
    国家自然科学基金(81571940,81741125); 军队后勤医学科研项目(CWH17L020,17CXZ008); 广东省自然科学基金(2014A030313599); 广东省科技计划项目(2013B021800047); 广州市科技计划项目(201607010116)

Advances in the mechanism of heart injury in severe heat stroke

Xinxin Hong1, Zhifeng Liu2, Lei Su2,()   

  1. 1. Department of Critical Care Medicine, General Hospital of Southern theatre Command of PLA, Guangzhou 510010, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China
    2. Department of Critical Care Medicine, General Hospital of Southern theatre Command of PLA, Guangzhou 510010, China
  • Received:2017-12-05 Published:2018-11-28
  • Corresponding author: Lei Su
  • About author:
    Corresponding author: Su Lei, Email:
引用本文:

洪欣欣, 刘志锋, 苏磊. 重症中暑心脏损伤机制的研究进展[J]. 中华重症医学电子杂志, 2018, 04(04): 363-367.

Xinxin Hong, Zhifeng Liu, Lei Su. Advances in the mechanism of heart injury in severe heat stroke[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(04): 363-367.

重症中暑是中暑最为严重的一种,常伴有多脏器功能障碍,具有高病死率和高致残率的特点。心血管功能障碍常见于重症中暑多脏器功能障碍患者,目前对其病理生理机制的认识不足,是临床预防和治疗重症中暑心功能障碍缺乏有效手段的重要原因。因此,本文围绕中暑导致心血管系统功能障碍、心脏损伤及相关分子生物学机制的研究进展进行综述,以更好地了解重症中暑所致心功能障碍,进一步为临床有效治疗提供新的思路。

Sever heat stroke, a life-threatening condition with high mortality and disability, is often accompanied withby multi-organ dysfunction syndrome (MODS). Cardiovascular dysfunction is common in heatstroke patients with multiple organ dysfunction syndrome. At present, the lack of understanding of its pathophysiological mechanism of cardiac dysfunction, is the main reason why there is insufficient prevention and treatment strategies for heat-induced cardiac dysfunction. Therefore, we provide a comprehensive review of recent advances in the cardiovascular dysfunction, heart injury and related molecular biological mechanism in heat stroke, aims to better understand the cardiac dysfunction caused by heat stroke and provide ideas for clinical effective treatment.

1
Leon LR, Bouchama A. Heat stroke [J]. Compr Physiol, 2015, 5(2): 611-647.
2
Qian L, Song X, Ren H, et al. Mitochondrial mechanism of heat stress-induced injury in rat cardiomyocyte [J]. Cell Stress Chaperones, 2004, 9(3): 281-293.
3
Lin X, Lin CH, Zhao T, et al. Quercetin protects against heat stroke-induced myocardial injury in male rats: Antioxidative and antiinflammatory mechanisms [J]. Chem Biol Interact, 2017, 265: 47-54.
4
Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century [J]. Science, 2004, 305(5686): 994-997.
5
Naughton MP, Henderson A, Mirabelli MC, et al. Heat-related mortality during a 1999 heat wave in Chicago [J]. Am J Prev Med, 2002, 22(4): 221-227.
6
Crandall CG, González-Alonso J. Cardiovascular function in the heat-stressed human: Heat stress and the cardiovascular system [J]. Acta Physiol, 2010, 199(4): 407-423.
7
Crandall CG, Wilson TE, Marving J, et al. Effects of passive heating on central blood volume and ventricular dimensions in humans [J]. J Physiol, 2008, 586(1): 293-301.
8
Low DA, Keller DM, Wingo JE, et al. Sympathetic nerve activity and whole body heat stress in humans [J]. J Appl Physiol, 2011, 111(5): 1329-1334.
9
Gagnon D, Romero SA, Ngo H, et al. Plasma hyperosmolality improves tolerance to combined heat stress and central hypovolemia in humans [J]. Am J Physiol Regul Integr Comp Physiol, 2017, 312(3): R273-R280.
10
Chen YH, DeHaan RL. Temperature dependence of embryonic cardiac gap junction conductance and channel kinetics [J]. J Membr Biol, 1993, 136(2): 125-134.
11
Klabunde RE, LePorte AD, Wilson TE. Effect of temperature on isoproterenol-induced increases in left ventricular developed pressure [J]. J Therm Biol, 2013, 38(7): 369-373
12
Sampaio KN, Mauad H, Spyer KM, et al. Differential chronotropic and dromotropic responses to focal stimulation of cardiac vagal ganglia in the rat [J]. Exp Physiol, 2003, 88(3): 315-327.
13
Wilson TE, Crandall CG. Effect of thermal stress on cardiac function [J]. Exerc Sport Sci Rev, 2011, 39(1): 12-17.
14
Crandall CG, Wilson TE. Human cardiovascular responses to passive heat stress [J]. Compr Physiol, 2015, 5(1): 17-43.
15
Brothers RM, Bhella PS, Shibata S, et al. Cardiac systolic and diastolic function during whole body heat stress [J]. Am J Physiol Heart Circ Physiol, 2009, 296(4): H1150-1156.
16
Crandall CG, Wilson TE, Marving J, et al. Colloid volume loading does not mitigate decreases in central blood volume during simulated haemorrhage while heat stressed [J]. J Physiol, 2012, 590(5): 1287-1297.
17
Wilson TE, Brothers RM, Tollund C, et al. Effect of thermal stress on Frank-Starling relations in humans [J]. J Physiol, 2009, 587(13): 3383-3392.
18
Pelà G, Regolisti G, Coghi P, et al. Effects of the reduction of preload on left and right ventricular myocardial velocities analyzed by Doppler tissue echocardiography in healthy subjects [J]. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol, 2004, 5(4): 262-271.
19
Nelson MD, Haykowsky MJ, Petersen SR, et al. Increased left ventricular twist, untwisting rates, and suction maintain global diastolic function during passive heat stress in humans [J]. Am J Physiol Heart Circ Physiol, 2010, 298(3): H930-937.
20
Brothers RM, Pecini R, Dalsgaard M, et al. Beneficial effects of elevating cardiac preload on left-ventricular diastolic function and volume during heat stress: implications toward tolerance during a hemorrhagic insult[J]. Am J Physiol - Regul Integr Comp Physiol, 2014, 307(8): 1036-1041.
21
Janssen PML, Periasamy M. Determinants of frequency-dependent contraction and relaxation of mammalian myocardium [J]. J Mol Cell Cardiol, 2007, 43(5): 523-531.
22
Chen WT, Lin CH, Hsieh MH, et al. Stress-induced cardiomyopathy caused by heat stroke [J]. Ann Emerg Med, 2012, 60(1): 63-66.
23
Quinn CM, Duran RM, Audet GN, et al. Cardiovascular and thermoregulatory biomarkers of heat stroke severity in a conscious rat model [J]. J Appl Physiol, 2014, 117(9): 971-978.
24
Akhtar MJ, al-Nozha M, al-Harthi S, et al. Electrocardiographic abnormalities in patients with heat stroke [J]. Chest, 1993, 104(2): 411-414.
25
Audet GN, Quinn CM, Leon LR. Point-of-care cardiac troponin test accurately predicts heat stroke severity in rats [J]. Am J Physiol Regul Integr Comp Physiol, 2015, 309(10): R1264-1272.
26
Hausfater P, Doumenc B, Chopin S, et al. Elevation of cardiac troponin I during non-exertional heat-related illnesses in the context of a heatwave [J]. Crit Care, 2010, 14(3): R99
27
Nakagawa Y, Inoue H, Shinone K, et al. Molecular biological analysis of cardiac effect of high temperature in rats [J]. Leg Med (Tokyo), 2012, 14(2): 63-68.
28
Wang X, Yuan B, Dong W, et al. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway [J]. Heart Vessels, 2015, 30(3): 396-405.
29
Yang Y, Duan W, Jin Z, et al. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury [J]. J Pineal Res, 2013, 55(3): 275-286.
30
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling [J]. Cell Signal, 2012, 24(5): 981-990.
31
Chang CK, Chang CP, Liu SY, et al. Oxidative stress and ischemic injuries in heat stroke [J]. Prog Brain Res, 2007, 162: 525-546.
32
Leon LR. Heat stroke and cytokines [J]. Prog Brain Res, 2007, 162: 481-524.
33
Leon LR, Helwig BG. Heat stroke: Role of the systemic inflammatory response [J]. J Appl Physiol, 2010, 109(6): 1980-1988.
34
Bouchama A, Ollivier V, Roberts G. Experimental heatstroke in baboon: analysis of the systemic inflammatory response [J]. Shock, 2005, 24(4): 332-335.
35
Bouchama A, Parhar RS, el-Yazigi A. Endotoxemia and release of tumor necrosis factor and interleukin 1 alpha in acute heatstroke [J]. J Appl Physiol, 1991, 70(6): 2640-2644.
36
Bouchama A, al-Sedairy S, Siddiqui S, et al. Elevated pyrogenic cytokines in heatstroke [J]. Chest, 1993, 104(5): 1498-1502.
37
Flierl MA, Rittirsch D, Huber-Lang MS, et al. Molecular events in the cardiomyopathy of sepsis [J]. Mol Med, 2008, 14(5-6): 327-336.
38
Quinn CM, Audet GN, Charkoudian N, et al. Cardiovascular and thermoregulatory dysregulation over 24 h following acute heat stress in rats [J]. Am J Physiol, 2015, 309(4): H557-564.
39
Yenari MA, Liu J, Zheng Z, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection [J]. Ann N Y Acad Sci, 2005, 1053: 74-83.
40
Ranek MJ, Stachowski MJ, Kirk JA, et al. The role of heat shock proteins and co-chaperones in heart failure [J]. Philos Trans R Soc Lond B Biol Sci, 2018, 373(1738):.
41
Hsu SF, Chao CM, Chang CP, et al. Heat shock protein 72 may improve hypotension by increasing cardiac mechanical efficiency and arterial elastance in heatstroke rats [J]. Int J Cardiol, 2016, 219: 63-69.
[1] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[2] 张慧平, 王金会, 李思袖, 杨雪峰, 唐小晶, 张海波, 朱巧棉, 梁若冰, 孙欢, 简茹, 刘建萍. 胸腔生物电阻抗法无创血流动力学监测对新生儿脓毒症患儿心功能障碍的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 220-227.
[3] 刘喆滢, 吉晶晶, 洪欣欣, 苏磊, 刘志锋. 重症中暑临床救治方法现状与研究进展[J]. 中华重症医学电子杂志, 2019, 05(02): 176-184.
[4] 倪啸晓, 刘志锋, 刘喆滢, 虞容豪, 苏磊. 高压氧对重症中暑大鼠认知障碍的保护作用[J]. 中华重症医学电子杂志, 2018, 04(04): 347-353.
[5] 刘旭, 王迪芬, 沈锋, 唐艳, 刘颖, 毕红英. 被动抬腿试验预测呼吸机脱机结局:一项系统综述和荟萃分析[J]. 中华重症医学电子杂志, 2018, 04(02): 131-135.
[6] 严静, 汪月奔. 重症患者的心功能障碍:病理生理与治疗[J]. 中华重症医学电子杂志, 2015, 01(01): 28-32.
[7] 姜雪, 孙忠伟, 冯芮琪, 黄安淼, 康新, 宋轶, 龙晓凤, 刚丽, 战丽彬, 路晓光. 复方中药治疗大连地区高温引发重症中暑的应用及疗效观察[J]. 中华卫生应急电子杂志, 2018, 04(06): 341-346.
[8] 文才, 余涛, 翟小竹, 杨正飞, 蒋龙元, 唐万春. 氢气吸入对长时程心脏骤停复苏后家猪心功能的保护作用[J]. 中华卫生应急电子杂志, 2017, 03(02): 92-97.
阅读次数
全文


摘要