切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (01) : 51 -55. doi: 10.3877/cma.j.issn.2096-1537.2019.01.009

所属专题: 文献

综述

高迁移率族蛋白B1与脓毒症认知功能障碍关系的研究进展
冯清1, 张丽娜1,()   
  1. 1. 410008 长沙,中南大学湘雅医院重症医学科
  • 收稿日期:2017-10-10 出版日期:2019-02-28
  • 通信作者: 张丽娜
  • 基金资助:
    国家自然科学基金(81401099); 湖南省自然科学基金(2017JJ3509)

HMGB1 and cognitive dysfunction in sepsis

Qing Feng1, Lina Zhang1,()   

  1. 1. Department of Intensive Care Unit, Xiangya Hospital of Central South University, Changsha 41008, China
  • Received:2017-10-10 Published:2019-02-28
  • Corresponding author: Lina Zhang
  • About author:
    Corresponding author: Zhang Lina, Email:
引用本文:

冯清, 张丽娜. 高迁移率族蛋白B1与脓毒症认知功能障碍关系的研究进展[J/OL]. 中华重症医学电子杂志, 2019, 05(01): 51-55.

Qing Feng, Lina Zhang. HMGB1 and cognitive dysfunction in sepsis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(01): 51-55.

脓毒症幸存者出院后常出现远期的记忆力下降、认知障碍、生活质量下降,甚至死亡等不利结局,给家庭和社会造成极大的经济及精神负担。近年来,脓毒症认知功能障碍越来越成为医学研究关注的热点,高迁移率族蛋白B1(HMGB1)作为关键晚期炎症介质参与了脓毒症发病过程,并且与脓毒症认知功能障碍存在密切关系。但HMGB1介导脓毒症认知功能障碍机制尚不清楚。目前认为其主要通过介导炎症反应及神经炎症,血脑屏障的破坏,氧化应激和小胶质细胞的激活,海马体的炎性损伤四个方面参与脓毒症认知功能损伤。未来亟待进一步探索HMGB1介导脓毒症与脓毒症后认知障碍的确切关系及其具体信号通路,进而为脓毒症及脓毒症认知功能障碍的防治开辟新的干预靶点。

Sepsis survivors long-term memory loss, cognitive impairment, decreased quality of life, and even death were very common in sepsis survivors after hospital discharge, which induce a huge economic and psychological burden on families and society. In recent years, the cognitive dysfunction induced by sepsis has become the focus of medical research. High Mobility Group Box 1 (HMGB1) as a key late inflammatory mediator during sepsis has involved in the pathogenesis of sepsis induced cognitive dysfunction. However, it is not yet clear about the mechanism of cognitive dysfunction mediated by HMGB1. At present, mediating inflammation and neuroinflammation, the destruction of the blood-brain barrier, the activation of oxidative stress and microglia, the inflammatory damage of hippocampus were main mechanism in the effect of HMGB1 on cognitive dysfunction during sepsis. To further explore the detail of HMGB1-mediated cognitive impairment during sepsis and its specific signaling pathway is critically encouraged to find new targets for prevention and treatment.

1
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 775-787.
2
Iwashyna TJ, Ely EW, Smith DM, et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis [J].JAMA, 2010, 304(16): 1787.
3
Patel MB, Morandi A, Pandharipande PP. What′s new in post-ICU cognitive impairment? [J]. Intensive Care Med, 2015, 41(4): 708-711.
4
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure [J]. JAMA, 2011, 306(23): 2594.
5
Angus DC. The lingering consequences of sepsis: a hidden public health disaster? [J]. JAMA, 2010, 304(16): 1833.
6
Angus D, Yang LL, Kellum J, et al. Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis [J]. Crit Care Med, 2007, 35(4): 1061-1067.
7
Chavan SS, Huerta PT, Robbiati S, et al. HMGB1 mediates cognitive impairment in sepsis survivors [J]. Mol Med, 2012, 18(9): 930.
8
Goodwin GH, Johns EW. Isolation and characterization of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids [J]. Eur J Biochem, 1973, 40(1): 215-219.
9
Huang W, Tang YL. HMGB1, a potent proinflammatory cytokine in sepsis [J]. Cytokine, 2010, 51(2): 119-126.
10
Wang Q, Zeng M, Wang W, et al. The HMGB1 acidic tail regulates HMGB1 DNA binding specificity by a unique mechanism [J]. Biochem Bioph Res Co, 2007, 360(1): 14-19.
11
Bagherpoor AJ, Dolezalova D, Barta T, et al. Properties of human embryonic stem cells and their differentiated derivatives depend on nonhistone DNA-Binding HMGB1 and HMGB2 proteins [J]. Stem Cells Dev, 2017, 26(5): 328-340.
12
Takeda T, Izumi H, Kitada S, et al. The combination of a nuclear HMGB1-positive and HMGB2-negative expression is potentially associated with a shortened survival in patients with pancreatic ductal adenocarcinoma [J]. Tumor Biol, 2014, 35(10): 10555-10569.
13
Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis [J]. Expert Opin Ther Tar, 2014, 18(3): 257.
14
Zheng S, Pan Y, Wang C, et al. HMGB1 turns renal tubular epithelial cells into inflammatory promoters by interacting with TLR4 during sepsis [J]. J Interf Cytok Res, 2016, 36(1): 9.
15
Fucikova J, Moserova I, Truxova I, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells [J]. Int J Cancer, 2014, 135(5): 1165-11677.
16
Stevens NE, Chapman MJ, Fraser CK, et al. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes [J]. Sci Rep, 2017, 7(1): 5850.
17
Abdulmahdi W, Patel D, Rabadi MM, et al. HMGB1 redox during sepsis [J]. Redox Bio, 2017, 13(C): 600-607.
18
Scaffidi P, Misteli T, Bianchi ME, et al. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation [J]. Nature, 2002, 418(6894): 191-195.
19
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal [J]. Nat Rev Immunol, 2005, 5(4): 331-342.
20
Wang H, Bloom O, Zhang M, et al. HMG-1 as a Late Mediator of Endotoxin Lethality in Mice [J]. Science, 1999, 285(5425): 248-251.
21
Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis [J]. J Intern Med, 2004, 255(3): 320.
22
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal [J]. Nat Rev Immunol, 2005, 5(4): 331.
23
任超, 李秀花, 许碧磊, 等. 中枢拮抗高迁移率族蛋白B1对脓毒症脑损伤的影响 [J]. 中华急诊医学杂志, 2016, 25(4): 433-438.
24
董宁, 姚咏明, 于燕, 等. 严重烧伤后高迁移率族蛋白B1的变化及其与脓毒症的关系 [J]. 中国医学科学院学报, 2007, 29(4): 466-470.
25
Shah BA, Padbury JF. Neonatal sepsis: An old problem with new insights [J]. Virulence, 2014, 5(1): 170.
26
Ivanov S, Dragoi AM, Wang X, et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA [J]. Blood, 2007, 110(6): 1970.
27
Gao M, Ha T, Zhang X, et al. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis [J]. Crit Care Med, 2012, 40(8): 2390.
28
Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis [J]. Expert Opin Ther Tar, 2014, 18(3): 257-268.
29
Lu B, Nakamura T, Inouye K, et al. Novel role of PKR in inflammasome activation and HMGB1 release [J]. Nature, 2012, 488(7413): 670.
30
Rendonmitchell B, Ochani M, Li J, et al. IFN-γ induces high mobility group box 1 protein release partly through a TNF-dependent mechanism [J]. J Immunol, 2003, 170(7): 3890-3897.
31
Lee SA, Man SK, Kim S, et al. The role of high mobility group box 1 in innate immunity [J]. Yonsei Med J, 2014, 55(5): 1165-1176.
32
Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE [J]. Nat Immunol, 2007, 8(5): 487-496.
33
Yu M, Wang H, Ding A, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2 [J]. Shock, 2006, 26(2): 174.
34
Cheng Y, Xiong J, Chen Q, et al. Hypoxia/reoxygenation-induced HMGB1 translocation and release promotes islet proinflammatory cytokine production and early islet graft failure through TLRs signaling [J]. Biochim biophys Acta, 2016, 1863(2): 354-364.
35
Lian YJ, Gong H, Wu TY, et al. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1 [J]. Brain Behav Immun, 2017, 59: 322.
36
Tian J, Dai H, Deng Y, et al. The effect of HMGB1 on sub-toxic chlorpyrifos exposure-induced neuroinflammation in amygdala of neonatal rats [J]. Toxicology, 2015, 338: 95-103.
37
Lee S, Nam Y, Koo JY, et al. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation [J]. Nat Chem Biol, 2014, 10(12): 1055.
38
Danielski LG, Giustina AD, Badawy M, et al. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis [J]. Mol Neurobiol, 2018, 55(2): 1045-1053.
39
Esen F, Senturk E, Ozcan PE, et al. Intravenous immunoglobulins prevent the breakdown of the blood-brain barrier in experimentally induced sepsis [J]. Crit Care Med, 2010, 14(S1): P24.
40
Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity [J]. J Exp Med, 2012, 209(6): 1057.
41
Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway [J]. J Clin Invest, 2007, 117(2): 289-296.
42
Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment [J]. Brain Behav Immun, 2015, 43(3): 54-59.
43
Moraes CA, Santos G, D′Avila JC, et al. Activated microglia-induced deficits in excitatory synapses through IL-1β: implications for cognitive impairment in sepsis [J]. Mol Neurobiol, 2015, 52(1): 653-663.
44
Agalave NM, Larsson M, Abdelmoaty S, et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis [J]. Pain®, 2014, 155(9): 1802-1813.
45
Gao HM, Zhou H, Zhang F, et al. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration [J]. J Neurosci, 2011, 31(3): 1081.
46
O′Connor KA, Hansen MK, Pugh CR, et al. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects [J]. Cytokine, 2003, 24(6): 254.
47
Kim S, Dede AJ, Hopkins RO, et al. Memory, scene construction, and the human hippocampus [J]. P Natl Acad Sci USA, 2015, 112(15): 4767-4772.
48
Olivieri R, Michels M, Pescador B, et al. The additive effect of aging on sepsis-induced cognitive impairment and neuroinflammation [J]. J Neuro Immunol, 2018, 314: 1-7.
49
Semmler A, Widmann CN, Okulla T, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors [J]. J Neurol Neurosurg Psychiatry, 2013, 84(1): 62-69.
50
Semmler A, Okulla T, Sastre M, et al. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions [J]. J Chem Neuroanat, 2005, 30(2-3): 144.
51
Li Z, Li B, Zhu X, et al. Neuroprotective effects of anti-high-mobility group box 1 antibody in juvenile rat hippocampus after kainic acid-induced status epilepticus [J]. Neuroreport, 2013, 24(14): 785-790.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[5] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[6] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[7] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[8] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[9] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[10] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[13] 克地尔牙·马合木提, 胡波, 杨琼, 闫素, 胡岚卿, 高沛沛, 姚恩生. 依达拉奉右莰醇对急性脑梗死后认知功能障碍的疗效观察[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 459-466.
[14] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
[15] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
阅读次数
全文


摘要