切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (01) : 51 -55. doi: 10.3877/cma.j.issn.2096-1537.2019.01.009

所属专题: 文献

综述

高迁移率族蛋白B1与脓毒症认知功能障碍关系的研究进展
冯清1, 张丽娜1,()   
  1. 1. 410008 长沙,中南大学湘雅医院重症医学科
  • 收稿日期:2017-10-10 出版日期:2019-02-28
  • 通信作者: 张丽娜
  • 基金资助:
    国家自然科学基金(81401099); 湖南省自然科学基金(2017JJ3509)

HMGB1 and cognitive dysfunction in sepsis

Qing Feng1, Lina Zhang1,()   

  1. 1. Department of Intensive Care Unit, Xiangya Hospital of Central South University, Changsha 41008, China
  • Received:2017-10-10 Published:2019-02-28
  • Corresponding author: Lina Zhang
  • About author:
    Corresponding author: Zhang Lina, Email:
引用本文:

冯清, 张丽娜. 高迁移率族蛋白B1与脓毒症认知功能障碍关系的研究进展[J]. 中华重症医学电子杂志, 2019, 05(01): 51-55.

Qing Feng, Lina Zhang. HMGB1 and cognitive dysfunction in sepsis[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(01): 51-55.

脓毒症幸存者出院后常出现远期的记忆力下降、认知障碍、生活质量下降,甚至死亡等不利结局,给家庭和社会造成极大的经济及精神负担。近年来,脓毒症认知功能障碍越来越成为医学研究关注的热点,高迁移率族蛋白B1(HMGB1)作为关键晚期炎症介质参与了脓毒症发病过程,并且与脓毒症认知功能障碍存在密切关系。但HMGB1介导脓毒症认知功能障碍机制尚不清楚。目前认为其主要通过介导炎症反应及神经炎症,血脑屏障的破坏,氧化应激和小胶质细胞的激活,海马体的炎性损伤四个方面参与脓毒症认知功能损伤。未来亟待进一步探索HMGB1介导脓毒症与脓毒症后认知障碍的确切关系及其具体信号通路,进而为脓毒症及脓毒症认知功能障碍的防治开辟新的干预靶点。

Sepsis survivors long-term memory loss, cognitive impairment, decreased quality of life, and even death were very common in sepsis survivors after hospital discharge, which induce a huge economic and psychological burden on families and society. In recent years, the cognitive dysfunction induced by sepsis has become the focus of medical research. High Mobility Group Box 1 (HMGB1) as a key late inflammatory mediator during sepsis has involved in the pathogenesis of sepsis induced cognitive dysfunction. However, it is not yet clear about the mechanism of cognitive dysfunction mediated by HMGB1. At present, mediating inflammation and neuroinflammation, the destruction of the blood-brain barrier, the activation of oxidative stress and microglia, the inflammatory damage of hippocampus were main mechanism in the effect of HMGB1 on cognitive dysfunction during sepsis. To further explore the detail of HMGB1-mediated cognitive impairment during sepsis and its specific signaling pathway is critically encouraged to find new targets for prevention and treatment.

1
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 775-787.
2
Iwashyna TJ, Ely EW, Smith DM, et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis [J].JAMA, 2010, 304(16): 1787.
3
Patel MB, Morandi A, Pandharipande PP. What′s new in post-ICU cognitive impairment? [J]. Intensive Care Med, 2015, 41(4): 708-711.
4
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure [J]. JAMA, 2011, 306(23): 2594.
5
Angus DC. The lingering consequences of sepsis: a hidden public health disaster? [J]. JAMA, 2010, 304(16): 1833.
6
Angus D, Yang LL, Kellum J, et al. Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis [J]. Crit Care Med, 2007, 35(4): 1061-1067.
7
Chavan SS, Huerta PT, Robbiati S, et al. HMGB1 mediates cognitive impairment in sepsis survivors [J]. Mol Med, 2012, 18(9): 930.
8
Goodwin GH, Johns EW. Isolation and characterization of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids [J]. Eur J Biochem, 1973, 40(1): 215-219.
9
Huang W, Tang YL. HMGB1, a potent proinflammatory cytokine in sepsis [J]. Cytokine, 2010, 51(2): 119-126.
10
Wang Q, Zeng M, Wang W, et al. The HMGB1 acidic tail regulates HMGB1 DNA binding specificity by a unique mechanism [J]. Biochem Bioph Res Co, 2007, 360(1): 14-19.
11
Bagherpoor AJ, Dolezalova D, Barta T, et al. Properties of human embryonic stem cells and their differentiated derivatives depend on nonhistone DNA-Binding HMGB1 and HMGB2 proteins [J]. Stem Cells Dev, 2017, 26(5): 328-340.
12
Takeda T, Izumi H, Kitada S, et al. The combination of a nuclear HMGB1-positive and HMGB2-negative expression is potentially associated with a shortened survival in patients with pancreatic ductal adenocarcinoma [J]. Tumor Biol, 2014, 35(10): 10555-10569.
13
Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis [J]. Expert Opin Ther Tar, 2014, 18(3): 257.
14
Zheng S, Pan Y, Wang C, et al. HMGB1 turns renal tubular epithelial cells into inflammatory promoters by interacting with TLR4 during sepsis [J]. J Interf Cytok Res, 2016, 36(1): 9.
15
Fucikova J, Moserova I, Truxova I, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells [J]. Int J Cancer, 2014, 135(5): 1165-11677.
16
Stevens NE, Chapman MJ, Fraser CK, et al. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes [J]. Sci Rep, 2017, 7(1): 5850.
17
Abdulmahdi W, Patel D, Rabadi MM, et al. HMGB1 redox during sepsis [J]. Redox Bio, 2017, 13(C): 600-607.
18
Scaffidi P, Misteli T, Bianchi ME, et al. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation [J]. Nature, 2002, 418(6894): 191-195.
19
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal [J]. Nat Rev Immunol, 2005, 5(4): 331-342.
20
Wang H, Bloom O, Zhang M, et al. HMG-1 as a Late Mediator of Endotoxin Lethality in Mice [J]. Science, 1999, 285(5425): 248-251.
21
Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis [J]. J Intern Med, 2004, 255(3): 320.
22
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal [J]. Nat Rev Immunol, 2005, 5(4): 331.
23
任超, 李秀花, 许碧磊, 等. 中枢拮抗高迁移率族蛋白B1对脓毒症脑损伤的影响 [J]. 中华急诊医学杂志, 2016, 25(4): 433-438.
24
董宁, 姚咏明, 于燕, 等. 严重烧伤后高迁移率族蛋白B1的变化及其与脓毒症的关系 [J]. 中国医学科学院学报, 2007, 29(4): 466-470.
25
Shah BA, Padbury JF. Neonatal sepsis: An old problem with new insights [J]. Virulence, 2014, 5(1): 170.
26
Ivanov S, Dragoi AM, Wang X, et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA [J]. Blood, 2007, 110(6): 1970.
27
Gao M, Ha T, Zhang X, et al. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis [J]. Crit Care Med, 2012, 40(8): 2390.
28
Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis [J]. Expert Opin Ther Tar, 2014, 18(3): 257-268.
29
Lu B, Nakamura T, Inouye K, et al. Novel role of PKR in inflammasome activation and HMGB1 release [J]. Nature, 2012, 488(7413): 670.
30
Rendonmitchell B, Ochani M, Li J, et al. IFN-γ induces high mobility group box 1 protein release partly through a TNF-dependent mechanism [J]. J Immunol, 2003, 170(7): 3890-3897.
31
Lee SA, Man SK, Kim S, et al. The role of high mobility group box 1 in innate immunity [J]. Yonsei Med J, 2014, 55(5): 1165-1176.
32
Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE [J]. Nat Immunol, 2007, 8(5): 487-496.
33
Yu M, Wang H, Ding A, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2 [J]. Shock, 2006, 26(2): 174.
34
Cheng Y, Xiong J, Chen Q, et al. Hypoxia/reoxygenation-induced HMGB1 translocation and release promotes islet proinflammatory cytokine production and early islet graft failure through TLRs signaling [J]. Biochim biophys Acta, 2016, 1863(2): 354-364.
35
Lian YJ, Gong H, Wu TY, et al. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1 [J]. Brain Behav Immun, 2017, 59: 322.
36
Tian J, Dai H, Deng Y, et al. The effect of HMGB1 on sub-toxic chlorpyrifos exposure-induced neuroinflammation in amygdala of neonatal rats [J]. Toxicology, 2015, 338: 95-103.
37
Lee S, Nam Y, Koo JY, et al. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation [J]. Nat Chem Biol, 2014, 10(12): 1055.
38
Danielski LG, Giustina AD, Badawy M, et al. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis [J]. Mol Neurobiol, 2018, 55(2): 1045-1053.
39
Esen F, Senturk E, Ozcan PE, et al. Intravenous immunoglobulins prevent the breakdown of the blood-brain barrier in experimentally induced sepsis [J]. Crit Care Med, 2010, 14(S1): P24.
40
Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity [J]. J Exp Med, 2012, 209(6): 1057.
41
Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway [J]. J Clin Invest, 2007, 117(2): 289-296.
42
Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment [J]. Brain Behav Immun, 2015, 43(3): 54-59.
43
Moraes CA, Santos G, D′Avila JC, et al. Activated microglia-induced deficits in excitatory synapses through IL-1β: implications for cognitive impairment in sepsis [J]. Mol Neurobiol, 2015, 52(1): 653-663.
44
Agalave NM, Larsson M, Abdelmoaty S, et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis [J]. Pain®, 2014, 155(9): 1802-1813.
45
Gao HM, Zhou H, Zhang F, et al. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration [J]. J Neurosci, 2011, 31(3): 1081.
46
O′Connor KA, Hansen MK, Pugh CR, et al. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects [J]. Cytokine, 2003, 24(6): 254.
47
Kim S, Dede AJ, Hopkins RO, et al. Memory, scene construction, and the human hippocampus [J]. P Natl Acad Sci USA, 2015, 112(15): 4767-4772.
48
Olivieri R, Michels M, Pescador B, et al. The additive effect of aging on sepsis-induced cognitive impairment and neuroinflammation [J]. J Neuro Immunol, 2018, 314: 1-7.
49
Semmler A, Widmann CN, Okulla T, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors [J]. J Neurol Neurosurg Psychiatry, 2013, 84(1): 62-69.
50
Semmler A, Okulla T, Sastre M, et al. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions [J]. J Chem Neuroanat, 2005, 30(2-3): 144.
51
Li Z, Li B, Zhu X, et al. Neuroprotective effects of anti-high-mobility group box 1 antibody in juvenile rat hippocampus after kainic acid-induced status epilepticus [J]. Neuroreport, 2013, 24(14): 785-790.
[1] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[2] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[3] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[4] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[5] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[6] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[7] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[10] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[11] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[12] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要