切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (01) : 46 -50. doi: 10.3877/cma.j.issn.2096-1537.2019.01.010

所属专题: 文献

综述

非经典途径细胞焦亡在脓毒症中的研究进展
彭菲1, 常炜1, 杨毅1,()   
  1. 1. 210009 南京,东南大学附属中大医院重症医学科
  • 收稿日期:2017-11-30 出版日期:2019-02-28
  • 通信作者: 杨毅
  • 基金资助:
    国家自然科学基金(81671892); 江苏省医学重点学科(实验室)(ZDXKA2016025); 江苏省医学重点人才项目(ZDRCA2016082); 江苏省自然科学基金(BK20161433)

Recent advances in non-canonical pyroptosis during sepsis

Fei Peng1, Wei Chang1, Yi Yang1,()   

  1. 1. Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
  • Received:2017-11-30 Published:2019-02-28
  • Corresponding author: Yi Yang
  • About author:
    Corresponding author: Yang Yi, Email:
引用本文:

彭菲, 常炜, 杨毅. 非经典途径细胞焦亡在脓毒症中的研究进展[J/OL]. 中华重症医学电子杂志, 2019, 05(01): 46-50.

Fei Peng, Wei Chang, Yi Yang. Recent advances in non-canonical pyroptosis during sepsis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(01): 46-50.

脓毒症是宿主对感染产生的失控反应,并出现危及生命的器官功能障碍。细胞焦亡(pyroptosis)是一种以促炎性为特点,依赖于Caspase酶活性的细胞程序性死亡。根据发生机制,将细胞焦亡分为经典焦亡途径和非经典焦亡途径。胞内脂多糖通过结合并激活Caspase-11/4/5,进而剪切并激活Gasdermin D蛋白,分离出活性GSDMD-N端,在胞膜形成gasdermin孔道,诱导细胞焦亡,称之为非经典途径细胞焦亡。细胞焦亡是一把双刃剑,一方面可以抵御病原体感染,另一方面能够导致邻近细胞和组织炎症反应,导致机体全身炎症反应。扩展对细胞焦亡分子机制及作用的认识有助于探索脓毒症治疗的新靶点。

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Pyroptosis is a kind of programmed cell death which characterized as proinflammatory and dependents on the caspase enzyme activity. Its development is mediated by canonical or non-canonical pathways according to the molecular mechanism. Caspase-11/4/5 is activated via combining to the intracellular lipopolysaccharide, and thus cleaves gasdermin D, thereby releasing its N domain with the pore-formingactivity, which forms a large pore in the membrane that induces non-canonical pyroptosis. Pyroptosis is a double-edged sword, which could contribute to immune defense against pathogen infection on one hand. however, on another hand, it induces inflammation of adjacent cell or organs causing systemic inflammation. Expand our knowledge of pyroptotic molecular mechanism and effect is beneficial to explore new potential targets for sepsis therapy.

1
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
2
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens [J]. Immunol Rev, 2015, 265(1): 130-142.
3
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection [J]. Nat Rev Immunol, 2017, 17(3): 151-164.
4
Cookson BT, Brennan MA. Pro-inflammatory programmed cell death [J]. Trends Microbiol, 2001, 9(3): 113-114.
5
Aglietti RA, Dueber EC. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions [J]. Trends Immunol, 2017, 38(4): 261-271.
6
Chen X, He WT, Hu L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis [J]. Cell Res, 2016, 26(9): 1007-1020.
7
He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion [J]. Cell Res, 2015, 25(12): 1285-1298.
8
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660-665.
9
Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria [J].Nat Immunol, 2010, 11(12): 1136-1142.
10
Aziz M, Jacob A, Wang P. Revisiting caspases in sepsis [J]. Cell Death Dis, 2014, 5: e1526.
11
Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11 [J]. Nature, 2011, 479(7371): 117-121.
12
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling [J]. Nature, 2015, 526(7575): 666-671.
13
Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock [J]. Science, 2013, 341(6151): 1250-1253.
14
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS [J]. Nature, 2014, 514(7521): 187-192.
15
Meunier E, Dick MS, Dreier RF, et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases [J]. Nature, 2014, 509(7500): 366-370.
16
Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4 [J]. Science, 2013, 341(6151): 1246-1249.
17
Saeki N, Kuwahara Y, Sasaki H, et al. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells [J]. Mamm Genome, 2000, 11(9): 718-724.
18
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores [J]. Nature, 2016, 535(7610): 153-158.
19
Yang D, He Y, Munoz-Planillo R, et al. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock [J]. Immunity, 2015, 43(5): 923-932.
20
Kovacs SB, Miao EA. Gasdermins: Effectors of pyroptosis [J]. Trends Cell Biol, 2017, 27(9): 673-684.
21
Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family [J]. Nature, 2016, 535(7610): 111-116.
22
Sborgi L, Ruhl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death [J]. EMBO J, 2016, 35(16): 1766-1778.
23
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death [J]. Trends Biochem Sci, 2017, 42(4): 245-254.
24
Lamkanfi M, Dixit VM. Manipulation of host cell death pathways during microbial infections [J]. Cell Host Microbe, 2010, 8(1): 44-54.
25
Casson CN, Yu J, Reyes VM, et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens [J]. Proc Natl Acad Sci U S A, 2015, 112(21): 6688-6693.
26
Akhter A, Caution K, Abu Khweek A, et al. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization [J]. Immunity, 2012, 37(1): 35-47.
27
Thurston TL, Matthews SA, Jennings E, et al. Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death [J]. Nat Commun, 2016, 7: 13292.
28
Knodler LA, Crowley SM, Sham HP, et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens [J]. Cell Host Microbe, 2014, 16(2): 249-256.
29
Aachoui Y, Leaf IA, Hagar JA, , et al. Caspase-11 protects against bacteria that escape the vacuole [J]. Science, 2013, 339(6122): 975-978.
30
Kuang S, Zheng J, Yang H, et al. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis [J]. Proc Natl Acad Sci U S A, 2017, 114(40): 10642-10647.
31
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases [J]. Immunol Rev, 2017, 277(1): 61-75.
32
Cheng KT, Xiong S, Ye Z, et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury [J]. J Clin Invest, 2017, 127(11): 4124-4135.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[7] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[8] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[9] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[10] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[11] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[12] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[13] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[14] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[15] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?